版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
StructuralapplicationsofFiberReinforcedConcretesimulatedwithDIANAGiuseppe
Tiberti,
Giovanni
PlizzariPhD-DICATAM-DepartmentofCivil,Environmental,ArchitecturalEngineeringandMathematics,UniversityofBresciaUniversityofBrescia,ITALYgiuseppe.tiberti@unibs.itgiovanni.plizzari@unibs.itResearch
group
Several
research
works
are
on-going
attheUniversityof
Brescia
The
research
groupledbyprof.G.A.Plizzariisdevelopinga
noticeableresearch
regarding
innovativecementitiousmaterials
for
usein
structuralapplications
The
aforementioned
research
groupis
currentlycomposed
by:-
GiovanniPlizzari,Full
professor
ofstructuralengineering;-
FaustoMinelli,PhD,
Assistantprofessorof
structural
engineering;-
GiuseppeTiberti,PhD,
Assistant
professor
of
structural
engineering
Furthermore,
several
PhD
Students
as
well
as
PhD
Fellowsareinvolvedin
theoverallactivitiesofthegroup
Itis
worthwhilenoticingthattheresearchdeveloped
concerning
FiberReinforced
Concretes
(FRCs)in
thelasttwo
decades
byprof.Plizzariandhisgroup
was
an
importantcontributionto
specificrulesand
recommendationscurrently
presentin
the
section
devotedtodesign
of
FRCstructuresin
thenew
Model
Code
20102/50Research
groupContentsAmongtheinnovativematerials
underinvestigationthispresentationwillbefocused
on
FRCPart
1:
Introduction
on
FRCPart
2:
Examples
concerningtheresearch
on-going
attheUniversity
ofBrescia
on
FRC
by
means
of
experimentalinvestigationas
well
as
by
meansof
numerical
simulationcarriedout
by
means
of
DIANAPart
3:
Main
concepts
regarding
the
necessary
procedure
for
includingfibrousreinforcementcontribution
inthecrack
modelscurrentlyimplementedinDIANAPart
4:
Numerical
simulations
of
precast
tunnellining
underthesevere
loadsapplied
by
Tunnel
Boring
Machines
(TBMs)duringtheexcavation
process3/50ContentsFiber
Reinforced
ConcreteMany
structural
and
non
structuralelements
are
nowadays
designedand
reinforced
with
FRC,
asPARTIAL
or
TOTAL
substitution
ofconventional
reinforcement.4/50Part
1:
Introduction
to
FRCTypes
of
FibersAluminium
fibersGlass
fibersSteel
fibersPolypropylen
fibers5/50Part
1:
Introduction
to
FRCFiber
Reinforced
Concrete
EffectsFiberContentVf
1%
(w)res•
Durability•
Minimum
Reinforcement
(N,
Me
V)•
Crack
Control•
Fatigue•
Enhancedtensionstiffeningandlimitationofdeflectionat
SLS•Shrinkage(restrainedbasically)•Post-Crackingtoughness•
D
Regions
(deep
beams,spalling,bursting,splitting)6/50Part
1:
Introduction
to
FRCStrain
Softening-Strain
HardeningPPPPPP(a)(b)Small
fibre
volume
fraction
(0.2
–
2%):
the
FRC
shows
a
softening
behaviour,but
it
is
characterised
by
a
residual
strength
as
well
as
a
greater
toughness.Higher
fibre
volume
fraction
(2
–
8%):
the
behaviour
can
become
hardening,duetothepresenceofmultiplecracking.NotchedSpecimensarenotgoodforstrainhardeningmaterials.7/50Part
1:
Introduction
to
FRCFrom
material
to
structural
behaviorNaaman,
A.E.
and
Reinhardt,
H.
(eds),
High
Performance
fiber
reinforced
cement
composites–HPFRCC4
RILEMProceedings,
PRO30,
Rilem
Publications
S.A.R.L.,
Bagneux,
France,
2003.8/50Part
1:
Introduction
to
FRCStructural
analysis:
RC
vs.
FRCRCFRCIn
RC
structuresthe
response
can
be
accepted
aslinearuptoyieldingofthe
reinforcementIn
FRC
structurestheresponseismarkedly
non
linearPerforming
Non
Linear
analysesisnecessary9/50Part
1:
Introduction
to
FRCFRC
Modelling
under
tensionBefore
CrackingAfter
Crackingfctmatrix
+
fibresPPEofibresmatrix1wcrFractureenergyin
FRCelementsismainly
provided
by
fiberspull-out10/50Part
1:
Introduction
to
FRCFRC
typical
fracture
tests•
Generallya
performance
approachis
chosen:thematerial
hastobe
tested
as
composite,
becausethemechanical
responsecannot
be
properlyidentifiedby
knowingthemix
design
andthemechanicalcharacteristicsof
each
componentUNIAXIAL
TENSION
TESTBENDING
TEST11/50Part
1:
Introduction
to
FRCCMOD-controlled
testsSeveral
standards,
concerning
the
characterization
of
FRC,
are
based
onCMOD-controlled
tests
on
notched
beams
loaded
with
a
three
(3PBT)
orfour
point
test
(4PBT).CMOD
is
the
Crack
Mouth
Opening
Displacement.
Basically,
CMOD
is
themouth
crack-opening
of
the
notchwhichincreases
during
thetest.bCTODCTODDepthofthenotchGAUGECMODCMODLGAUGECTOD
is
the
Crack
Tip
Opening
Displacement.
Basically,
CTOD
is
thecrack-opening
at
the
notchtip.12/50Part
1:
Introduction
to
FRCFRC
classification
(3PBT)EN
14651hsp
=
125
mmb
=
150
mm3Fj
lf
R,jLinearstressdistribution,2bh2Nominalresidualpost-crackingstressessp13/50Part
1:
Introduction
to
FRCAnalysis
of
a
masonry
wall
with
SFRM
coating:effects
of
coating
shrinkage
on
the
wall
capacityFree
bodydiagramSpecimengeometryandloadset-up3-D
mesh
(Diana
9.4.4)VVV/2Hbeam
elements
forsimulatingsteelconnectors
betweencoating
and
masonrybrick
elements
forinterface
elements
forsimulating
the
non-linearbehavior
of
masonry-to-coating
interfacesimulatingmasonry
andSteel
Fiber
ReinforcedMortar
coating14/50Part
2:
Examples
of
FRC
structural
applications
investigatedSimulation
of
a
Steel
Fiber
Reinforced
Concreteunderground
water
tank3-D
model
(Diana
9.3)Structureoverviewandloadset-up¼
tankSteel
60mmpipeTypicalloadingconditionsbrickelementsGroundpressureontheoutersurfaceOnenodetranslationelements15/50Part
2:
Examples
of
FRC
structural
applications
investigatedSteel
Fiber
Reinforced
Concrete
thin
slabs3-D
modelSimplysupportedslabgeometryandloadset-upFourpointbendingtestFracture
behavior
ofSFRSCC
modeled
bythe
“total
strainrotating
crack
model”(smeared
crackNo-tension
springelements
formodeling
supportsapproach)16/50Part
2:
Examples
of
FRC
structural
applications
investigatedSlabs
on
grade
under
shrinkage
effectNumerical
model:3D
numerical
model,
because
of
symmetry,
one-quarter
of
slab
was
simulated.Numerical
results,
typical
slab
response
under
shrinkage
effect:Distributionofverticaldisplacement
[mm]
at
first
crack,8.5
days:curlingeffect.17/50Part
2:
Examples
of
FRC
structural
applications
investigatedSteel
Fiber
Reinforced
Concrete
pipesTypicalgeometryandloadset-up2-D
model2-D8-nodeselements18/50Part
2:
Examples
of
FRC
structural
applications
investigatedConventional
excavated
tunnel
with
cast
in
placeFRC
tunnel
liningMesh
refinementBenchCold
jointInvert19/50Part
2:
Examples
of
FRC
structural
applications
investigatedPrecast
FRC
tunnel
lining
elements20/50Part
2:
Examples
of
FRC
structural
applications
investigatedIncluding
fibrous
reinforcement
contribution
in
NLFEA
The
main
advantage
of
FRCwithrespectto
a
traditionalplainconcreteisthe
noticeable
improvement
of
the
post-cracking
response
because
offibrousreinforcementcontribution
In
orderto
includethiscontributionseveral
crack
models
arecurrentlyimplementedin
DIANA:-multi-directionalfixedcrack
model;-totalstrainfixedcrack
model;-totalstrainrotating
crack
Asa
general
recommendation,itis
always
better,ifitis
possible,to
verifyandvalidatethenumerical
modelwithexperimentaltests
available
inliteratureonstructuralelementssimilarof
that
underinvestigation21/50Part
3:
Main
concepts
modelling
FRC
with
DIANAPost-cracking
contribution
in
NLFEA
The
post-crackinglaw
forusein
numericalanalysesis
generallyobtainedby
means
of
the
inverse-analysis
method:DiscretecrackapproachSmearedcrackapproachfctfct+Ecs1ww1Post-cracking
law,Part
3:
Main
concepts
modelling
FRC
with
DIANAwcCTODmPre-cracking
law,
--w22/50Post-cracking
contribution
in
NLFEA
Typicalresultsobtained
by
means
ofa
discrete
and
smeared
approach
byusingDIANA:765432103PBT-EN14651-SFRC0.25MExperimentalMeanexperimentalSFRC0.25MDiscreteapproachSFRC0.25MSmearedapproach00.511.522.533.5CTODm
[mm]23/50Part
3:
Main
concepts
modelling
FRC
with
DIANANon-linear
-
numerical
analysesSeveralexperimentaltestsonSFRCspecimenswerenumericallysimulatedinordertocheckthepreviouslymentionedissuesByusingDIANAandthetotalstraincrackmodelthefollowingloadingconditionsweresuccessfullysimulated(goodagreement)4PBTsSplittingtestsFlexuralandsplittingtestsonfull-scalesegmentswith/withoutcurvaturerespectively109NumericalCrackPatterns876LVDT2LVDT25ExperimentalCrackPatterns43SFRC50/0,75-Vf=0,51%:FEAExperimental21000,20,40,60,811,2ε,
LVDT[‰]24/50Part
3:
Main
concepts
modelling
FRC
with
DIANAMain
advantages
of
FRC
precast
tunnelsegments
Enhanced
toughness
Smallercrackopening
crackpatternmoredistributed
(durability)
Higherresistancetoimpactloadingand
improvefatigueresistance25/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseMain
advantages
of
FRC
precast
tunnelsegments
No
detachment
of
crackedconcreteblocksin
tunnels
Fibresrepresenta
reinforcement
spread
out
everywhereinto
thelining(includingconcretecover)
The
presence
offiberreinforcementin
theconcretematrixwouldallow
timereductionin
fabrication,handlingandplacingofthecurvedrebars
Fibrereinforcement
cansubstitutereinforcementalongthetunnel(secondary
reinforcement)thatmay
be
usedforstressredistribution26/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseMain
advantages
of
FRC
precast
tunnelsegments
Improvedindustrialprocess
No
more
storage
areasforreinforcement27/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseFRC
precast
tunnel
segments
Opportunitiesoffer
by
FRC
asa
reinforcementforFRCprecast
tunnelsegmentsNon
Linear
NumericalSimulationsdeveloped
by
means
of
DIANA
Study
of
the
global
and
local
tunnelliningbehaviour28/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseThrust
Phase
–
Introduction
The
precast
assembledringshould
guaranteethenecessary
longitudinalsupportforexcavation
processmadewithTBMShieldSegmentsringExcavingdirectionHydraulicJacksCutterHead
Differentapplicationmethods
ofthehydraulic
jacks
accordingto
differenttypical
configurations:
french,
japanese,
etc.29/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseBarcelona
Metro
–
Line
930/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseGeometrical
characteristicThickness
ofthe
ring
s=350
mmDepth
oftheringd=1800
mm7
segments+
1
key
segmentUniversal
tapered
segmentsLine
9,
double
deckconfiguration31/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseDamaged
segments
during
TBM
operationsBarcelona
Metro
Line
9
During
theconstruction
oftheBarcelona
Metro
Line
9,spallinglocalizedcracks
appear:probably
due
eccentricload(relativepositionbetweenjacksand
tunnelsegment)NicolaDellaValle,2005
Bending
cracks
appear:
probably
dueto
no-smooth
supportin
thering
jointNicolaDellaValle,200532/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseMaterials
adopted
Strength
class
ofthecementitious
matrix
ofallspecimens:
C50/60
Mechanical
properties
of
concrete:Constitutivelawforconcreteundercompression:-Ec=37000MPa-
fct=4.10MPa-
fc,cube=64.1MPa706050403020100EuroCode2ThorenfeldtParabola
Thefollowing
type
offiberhas
been
adopted:00,0005
0,001
0,0015
0,002
0,0025
0,003
0,0035
0,004
0,0045
0,005CompressivestrainShapehooked1100SteelFiberUltimate
tensile
strength[MPa]DosageModulus
of
elasticity
[MPa]Cross
SectionLength
[mm]Diameter
[mm]Aspect
Ratio210000circular500,756725/35/45kg/m³33/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseDetermination
of
fracture
laws
4PointBendingTestson
notched
beams,
UNI
11039Determinationoffracturebilinearlaws,inverseanalysismethod.Numericalsimulationsof4PBTMesh2DPlanestress,DiscreteFractureWirand
FF1
-
45
-
C50/60
-
Vf=0,57%8,07,06,05,04,03,02,01,00,0fcts1Gffctw1wcwExperimentalFEADIANASmeareds1Gf0,00,10,20,3w1wwcCTODm
[mm]34/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseNumerical
model
adopted
Normalloading
condition:idealpositioningofhydraulicjacks
and
bearingpads:Springelements,SP1TR,no-tension,positionedonthe4bearingpadsurfaces.SupportoftheringjointuniformTwopairsofactuatorsactingonsteelplates:totalserviceloadapproximately12MNSpringelements,no-tension,actingintangentialdirectioninordertosimulatethepresenceofadjacentsegments35/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseLinea
9
–
Barcelona
–
Thrust
jack
phase
Thefollowingreinforcement
combinations
were
adopted:2chords350mm350mm50/1,0-Vf=0,57%45kg/m350/0,75-Vf=0,32%25kg/m3Stiirups6@200mm14=0,22%RCO+50/0,75-Vf=0,32%71kg/m3RC97kg/m3RC+50/0,75-Vf=0,32%122kg/m336/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseLinea
9
–
Barcelona
–
Numerical
results
Normal
loadingcondition(ideal
placement
of
supports
andjacks):Normal
loading
condition353025201510532,521,5150/1,0
-
Vf=0,57%50/0,75-
Vf=0,32%RCRC+
50/0,75-
Vf=0,32%RCO
+
50/0,75
-
Vf=0,32%0,5000,000,501,001,502,002,503,00Splitting
cracksAverage
displacement
under
the
loading
surfaces
[mm]Spalling
cracks37/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseLinea
9
–
Barcelona
–
Numerical
resultsNormal
loading
condition35302520151053radial2,5z,
longitudinal
tunnel
axis2Point
3Point
2Point
1115mm50/1,0-
Vf=0,57%
-
Point150/0,75-
Vf=0,32%
-
Point1RC-
Point11,51tangentialRC+
50/0,75-
Vf=0,32%
-
Point1RCO+
50/0,75-
Vf=0,32%
-
Point10,50→
Schemeofthepointsofthemeasurementusedfor00,000,200,400,600,801,001,20
studyingthesplittingphenomenaunderthethrustRelative
displacement
inradial
direction
under
the
thrust
jacks
[mm]Normal
loading
conditionjacks.353025201510532,52900
mm50/1,0-
Vf=0,57%50/0,75-Vf=0,32%RC1,5→
Schemeofthebaseofmeasurementadoptedforestimatingthewidthofspalling
cracks;1RC+
50/0,75-
Vf=0,32%RCO+
50/0,75-Vf=0,32%0,5000,000,501,001,502,002,50Relative
displacement
in
the
region
between
the
thrust
jacks
[mm]Part
4:
Numerical
simulations
of
TBM
thrust
phaseLinea
9
–
Barcelona
–
Numerical
results→
Lineofinvestigationsadoptedundertheloadingareasofthethrustjacks:→
Interpretationofthelocalbehaviourundertheloadingareas:are-distributiontakeplaceinanareaofabout550mmwhichcorrespondstoabout1,6timesthethicknessoftheliningNormal
loading
condition
-
Line
01Normal
loading
condition
-
Line
015,00,010,05,00200400600800100012001400160018000,0020040060080010001200140016001800-5,0dh=350mm-5,0d550-600mm-10,0-15,0-20,02,21S.Load2,58S.Load2,64S.Load-10,0-15,0-20,01,96S.Load2,09S.LoadDistance
[mm]Distance
[mm]39/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseCheck
of
mesh
refinementMeshrefinement(Coarse
mesh)FIRST
CRACK(Refined
mesh)FIRST
CRACKSERVICE
LOAD1,5*SERVICE
LOAD2*SERVICE
LOADSERVICE
LOAD1,5*SERVICE
LOAD2*SERVICE
LOAD40/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseIrregularities
A
number
of
irregularities
can
occurin
practice
during
the
thrust
jack
phase1)
thrust
jacks
may
be
not
exactly
on
place2)ringjointmay
not
be
plane1)
thrust
jacks
may
be
not
exactly
on
place:Inside
tunnel-
Eccentricityofthehydraulicjacks-
InclinationofthehydraulicjacksEccentricityOutside
tunnelInside
tunnelInclinationOutside
tunnel41/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseIrregularitiesOutwardeccentricityInwardeccentricity42/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseInfluence
of
irregularities2)ring
jointmay
not
be
in
plane:Normalloadingcondition;segmentperfectlyplacedNon-smoothsupportsintheringjointCombinationoftheFrenchandJapanesejackconfiguration
Numericalresults
of
aneccentric
load
are
presented
hereinincomparisonwithnormalloadingcondition43/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseEccentric
placement
of
thrust
jack
Eccentricplacement
of
thrustjackin
radialdirection:willincrease
thespallingstresses
and
can
damagethesegment-EccentricplacementhasbeenmodeledinFEanalysisasatriangularpressuredistributionontheloadingsurface-Consequently,aneccentricityof37.3mmhasbeenappliedInsidetunnelInsidetunnelOutside
tunnelOutside
tunnel44/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseEccentric
placement
of
thrust
jack
Eccentricityappliedoutward:Becauseoftheeccentricity,thesegmenttiltsoutwardprovidingano-smoothsupportAbendingmomentoccursSplitting
andspallingstressesinitiate
at
an
earlierloadlevel.45/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseEccentric
placement
of
thrust
jack
Eccentricity
appliedoutward:Eccentricityoutside302520151052,52Normal
l.condition-Fiberreinforcementcannotlocallycompetewithtraditionalrebarsconcentratedinthechords(proposedsolution)1,5150/1,0-Vf=0,57%50/0,75-Vf=0,32%RCEccentricityoutside2520,5RC+50/0,75-Vf=0,32%RCO+50/0,75-Vf=0,32%2015001,50,000,501,001,502,002,503,00Average
displacement
under
the
load
surfaces
[mm]-
Reductionofthes.f.withrespecttothe1normalloadcond.;1050/1,0-Vf=0,57%50/0,75-Vf=0,32%-NoticeableincrementofthecrackpatternBetweentheloadingareas(thrustjacks);0,550RCRC+50/0,75-Vf=0,32%RCO+
50/1,0-Vf=0,32%06,00-1,000,001,002,003,004,005,00Relative
displacement
in
the
region
between
the
thr
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4 《地球-我们的家园》(教学实录)部编版道德与法治六年级下册
- 化妆合同范例 简易范例
- 开发项目技术合同范例
- 2025年马鞍山货运上岗证考试题库
- 大学商铺合同范例
- 无锡农村平房买卖合同范例
- 再生钢材采购合同范例
- 农村合伙购房合同范例
- 技术成果合同范例
- 汕头律师合同范例
- 学前儿童游戏指导形成性考核二
- 手术室人员管理规范
- 01中国电信云计算产品体系架构
- 中国舞蹈基础智慧树知到期末考试答案章节答案2024年中国石油大学(华东)
- 年产1万吨连续玄武岩纤维及其制品申请建设可行性研究报告
- 专题片创作与赏析智慧树知到期末考试答案2024年
- 饮食基因与文化智慧树知到期末考试答案2024年
- 《元旦晚会中学生》课件
- 漂流项目规划设计方案
- 墙面修复施工方案
- 徐工集团招聘测评题库
评论
0/150
提交评论