湘教版数学七年级上册一元一次不等式_第1页
湘教版数学七年级上册一元一次不等式_第2页
湘教版数学七年级上册一元一次不等式_第3页
湘教版数学七年级上册一元一次不等式_第4页
湘教版数学七年级上册一元一次不等式_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湘教版数学七年级上册教案湖南省安化县羊角塘镇中学瞿忠仪编制邮箱:quzhongyi1958@不等式的性质(1)〖教学目标〗◆了解不等式的意义.◆经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力.◆感受生活中存在着大量的不等关系.◆初步体会不等式是研究量与量之间关系的重要模型之一.〖教学重点与难点〗◆教学重点:不等式的意义.◆教学难点经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力.〖教学过程〗一、创设情境:图5-1401、下列问题中的数量关系能用等式表示吗?若不能,应该用怎样的式子来表示?图5-140(1)图5-1是公路上对汽车的限速标志,表示汽车在该路段行驶的速度不得超过40km/h.用v(km/h)表示汽车的速度,怎样表示v与40(2)据科学家测定,太阳表面的温度不低于6000℃。设太阳表面的温度为t(℃(3)如图5-2,天平左盘放3个乒乓球,右盘放5g砝码,天平倾斜。设每个乒乓球的质量为x(g),怎样表示x与5之间的关系?(4)如图5-3,小聪与小明玩跷跷板。大家都不用力时,跷跷板左低、右高,小聪的身体质量为p(kg),书包的质量为2kg,小明的身体质量为q(kg),怎样表示p,q之间的关系?(5)要使代数式有意义,x的值与3之间有什么关系?二、探究新知:2、议一议:观察由上述问题得到的关系式,它们有什么共同的特点?像v≤40,t≥6000,3x>5,q<p+2,x≠3这样,用符号“<”(或“≤”),“>”(或“≥”),“≠”连成的数学式子,叫不等式(inequality)。这些用来连接的符号统称不等号(inequalitysymbol)3、讲解例题例1根据下列数量关系列不等式:(1)a是正数;(2)y的2倍与6的和比1小;(3)x2减去10不大于10;(4设)a,b,c为一个三角形的三条边长,两边之和大于第三边.做一做:(1)已知x1=1,x2=2,请在数轴上表示出x1,x2的位置;(2)x<1表示怎样的数的全体?4、归纳:x<a表示小于a的全体实数,在数轴上表示a左边的所有点,不包括a在内(如图5—4);x≥a表示大于或等于a的全体实数,在数轴上表示a右边的所有点,包括a在内(如图5一5);b<x<a(b<a=表示大干b而小于a的全体实数,在数轴上表示如图5一6.你能在数轴上分别类似地表示x>a,x≤a和b≤x<a(b<a=吗?5、讲解例2一座小水电站的水库水位在12~20m(包括12m,20m)时,发电机能正常工作。设水库水位为x(m).(1)用不等式表示发电机正常工作的水位范围,并把它表示在数轴上;(2)当水位在下列位置时,发电机能正常工作吗?①x1=8;②x2=10;③x3=15;④x4=19.请用不等式和数轴给出解释.三、巩固反思:课内练习P102T1T2T3四、小结:通过这节课的学习,你有哪些收获?不等式的性质(2)〖教学目标〗◆1、使学生掌握和理解不等式的三条基本性质.◆2、培养学生观察、分析、比较的能力,会运用不等式的基本性质进行不等式的变形,提高他们灵活地运用所学知识解题的能力.〖教学重点与难点〗◆教学重点:不等式的三条基本性质的运用.◆教学难点:不等式的基本性质3的运用和不等式的变形以及范例要比较两个代数式的大小的几种方法,学生缺乏这方面的经验,这些是本节教学的难点.〖教法和学法〗操练合作发现总结式教学法操练合作发现归纳应用总结〖教学过程〗一、从学生原有的认知结构提出问题,练习问题,解决问题,总结结论。1.用“<、>、=“完成下列填空:(1)如果a<-9,而-9<3,那么a_____3。(2)如果a>-9,而-9>-13,那么a____-13。你发现了什么?你还可以再举例吗?试一试!能得到什么结论?不等式的基本性质1:若a<b,b<c,则a<c,这个性质也叫做不等式的传递性。2.通过实验观察,用“<、>、=“完成下列填空:8g2g82585222g28_>_58+2_>_5+210_>_710-2_>_7-2你发现了什么?试一试!你能得到什么结论?通过观察和举实例合作学习,完成下列两个问题,并自己判断前面的猜想的结论是否正确?(1)已知a<b和b<c,在数轴上表示如图:abc由数轴上a和c的位置关系,你能得到什么结论?(2)若a>b,则a+c和b+c哪个较大,a-c和b-c呢?请用数轴上点的位置关系加以说明。不等式的基本性质2:不等式的两边都加上(或减去)同一个数,所得的不等式仍成立。你总结出来了吗?做一做1.用适当的不等号填空:(1)∵01,∴aa+1(不等式的基本性质2)(2)∵(a-1)20∴(a-1)2-2-2(不等式的基本性质2)2.a,b两个实数在数轴上的对应点如图所示:用“>”或“<”号填空:(1)ab;(2)|a||b|;(3)a+b0(4)a-b0(5)a+ba-b(6)ababoa3.通过计算,用“<、>、=“完成下列填空:232×(-1)3×(-1)2×53×52×(-5)3×(-5)2×1/23×1/22×(-1/2)3×(-1/2)你发现了什么?你还可以再举例吗?试一试!你又有什么样的结论呢?-2-3-2×(-1)-3×(-1)-2×5-3×5-2×(-5)-3×(-5)-2×1/2-3×1/2,-2×(-1/2)-3×(-1/2)不等式的基本性质3:不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立;不等号的方向不变。不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得的不等式成立。再做一做我国于2001年12月11日正式加入世界贸易组织(WTO)。加入前,产品A的进口税超过产品B的进口税的1倍以上;加入后,这两种产品的进口税都下调了15%。你认为加入后产品A的进口税仍超过产品B的进口税的1倍以上吗?请说明理由。二、对学生刚学的知识进行巩固应用1.范例讲解:已知a<0,试比较2a与a的大小解法一:举实例法解法二:数轴表示法解法三:应用性质2移项法2.课内练习:书本P:1063.探究活动:比较等式与不等式的基本性质等式等式不等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。两边都乘以(或除以)同一个数(除数不能是0),所得结果仍是等式。两边都乘以(或除以)同一个正数,不等号的方向不变。两边都乘以(或除以)同一个负数,不等号的方向改变。三、对这节课所学知识回顾总结1。这节课你有那些收获?2。还有哪些困惑?3。布置作业:书本作业和课外练习当x取下列数值时,不等式1-5x<16是否成立?,-4,-3,4,,0,-1.用不等式表示下列数量关系:(1)x的3倍大于x的2倍与5的差;(2)y的一半与4的和是负数;(3)5与a的4倍的差不是正数;(4)3与x的2倍的和是正数.3.按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:(1)m>n,两边都减去3;(2)m>n,两边同乘以3;(3)m>n,两边同乘以-3;(4)m>n,两边同乘以m.下列各题的横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.(1)若a-3<9,则a______12;(2)若-a<10,则a______-10;(3)若0.5a>-2,则a______-4;(4)若-a>0,则a______0。已知a<0,用>或<号填空:使不等式成立.并说明是根据哪一条不等式基本性质.(1)a+2______2;(2)a-1______-1;(3)3a______0;(4)-3a______0;(5)a-1______0;(6)|a|______0.6.判断下列各题的推导是否正确?为什么?因为>,所以<;(2)因为a+8>4,所以a>-4;(3)因为4a>4b,所以a>b;(4)因为-1>-2,所以-a-1>-a-2;(5)因为3>2,所以3a>2a.照下列条件,写出仍能成立的不等式:(1)由-2<-1,两边都加-a;(2)由7>5,两边都乘以不为零的-a;由-3>-4,两边都除以不为零的-a.8.用不等号填空:当a-b<0时,a______b;(2)当a<0,b<0时,ab______0;(3)当a<0,b>0时,ab______0;(4)当a>0,b<0时,ab______0;(5)若a______0,b<0,则ab>0;9.设a<b,用不等号连接下列各题中的两个代数式:(1)a-1,b-1;(2)a+2,b+2;(3)2a,2b;10.用不等号填空:(1)若a-b<0,则a______b;(2)若b<0,则a+b______a;(3)b<a<2,则(a-2)(b-2)______0;(2-a)(2-b)______;(2-a)(a-b)______.一元一次不等式的解法(1)〖教学目标〗◆1、知道什么是一元一次不等式和不等式的解.◆2、掌握一元一次不等式的解法.◆3、通过"等与不等"的对比使学生进一步领会对立统一的思想.〖教学重点与难点〗◆教学重点:掌握解法步骤并准确地求出解集.并能准确的把解表示在数轴上.◆教学难点:正确地运用不等式基本性质3.◆教学关键:一元一次不等式与一元一次方程的解法步骤的区别,等式性质2与不等式的基本性质的区别〖教学过程〗创设情景1、先复习不等式性质,解一元一次方程的解法。师:用多媒体教学设备将制好的幻灯片放出:1、 题组练习:用“>”和“<”填空(1)20;-52;-7-10;(2)设a>b,则:a+1b+1a-3___b-33a3b-a-b2、 议论(用幻灯片打出):(1) 根据不等式的基本性质,说明下列语句对不对:① 从5>4一定能得到5a>4b,②从1/3<1一定能得到1/3a<a.(2)①甲在不等式-100<0的两边都乘以-1,竟得到100<0!它错在哪里?②乙在不等式2x>5x的两边都除以x,竟得到2>5!它错在哪里?生:[由学习小组(4人或6人)讨论后选一代表回答]3、回忆解一元一次方程的一般步骤并完成练习:解下列方程,并用数轴表示它的解:(1)3x=18;(2)5x-3=7x+1;注:由四个学习小组出两名同学自选一题上黑板演算,并对挑选较难题的同学进行激励评价。4、Ⅰ将方程中的等号改写为不等号引入概念:(1)3x<18;(2)5x-3≥7x+1;提出问题:对比一元一次方程的定义,给这两个式子起一个名字。给出定义:只含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式。5、引出课题:我们今天就是来探讨一元一次不等式的解法(板书:一元一次不等式的解法1)新课教学1想一想:把x=8代入不等式3x<18,不等式成立吗?能否因此就说不等式的解是x=8?生:不是,还有很多。师:哦,原来还有很多很多的解哦!那请同学们帮老师把他们在数轴上指出来(师画数轴,叫一学生上来指出)2、得出:不等式解的概念:能使不等式成立的未知数的值的全体叫做不等式的解集,简称不等式的解。3老师讲述怎样用数轴表示不等式解的方法(强调等号取于不取的不同之处)4、试一试解下列不等式,并把解表示在数轴上;(1)3x<18;(2)5x-3≥7x+1;师:(1)解不等式就是利用不等式的基本性质,把要求解的不等式变形“x<a”(或x≥a),“x>a”(或X≤a)的形式。解:(1)x<9(2)两边同加上-7x,再在不等式两边同加上3得:5x-7x≥1+3合并同类项得:-2x≥4两边同除以-2得:x≤-2(注意学生改写时,不要把不等号的方向弄错)师:(2)解方程的移项法则对解不等式是否仍然适用?若适用,它的根据是什么三、;练一练1解下列不等式,并把解表示在数轴上;(1)1-x>2;(2)5x-4>4-3x;(3)--x≤1;(4)6x-1<9x-42、解不等式<x-1,把解表示在数轴上,并求出适合不等式的正整数解。四、小结1、让学生来总结:这节课你们有什么收获。2、需要特别注意什么?(如果乘数或除数是负数,要把不等号方向改变,即必须特别注意不等式基本性质五、巩固新知,体验成功。作业题1、2(110页)六、布置作业作业题3、4、5、6作业本思考:解不等式(1)3(1-X)<2(X+9);(2)(2+X)÷2≥(2X-1)÷3.七、结束语:同学们这节课学得很好,相信你们课后能很轻松地完成作业!一元一次不等式的解法(2)〖教学目标〗◆1、掌握解一元一次不等式的一般步骤.◆2、会运用解一元一次不等式的一般步骤解一元一次不等式.〖教学重点与难点〗◆教学重点:运用解一元一次不等式的一般步骤解一元一次不等式.◆教学难点:例2步骤较多,容易发生错误,是本节教学的难点.〖教学过程〗一、复习旧知,引入新课:1、不等式的三个基本性质。2、一元一次不等式的概念。3、不等式的解的概念。二、合作交流,探求新知:1、合作学习,根据已学过的知识,你能解下列一元一次不等式吗?(1)5x>3(x-2)+2(2)2m-3<(7m+3)/22、解一元一次不等式与解一元一次方程的步骤类似。解一元一次不等式的一般步骤和根据如下:步骤根据1去分母不等式的基本性质32去括号单项式乘以多项式法则3移项不等式的基本性质24合并同类项,得ax>b,或ax<b(a≠o)合并同类项法则5两边同除以a(或乘1/a)不等式的基本性质33、例1、解不等式3(1-x)>2(1-2x)解:去括号,得3-3x>2-4x移项,得-3x+4x>2-3合并同类项,得x>-14、例2、解不等式(1+x)/2≤(1+2x)/3+1解:去分母,得3(1+x)≤2(1+2x)+6去括号,得3+3x≤2+4x+6移项,得3x-4x≤2+6-3合并同类项,得-x≤5两边同除以-1,得x≥-5注:1、五个步骤要求当堂背出,同桌之间可以互相核对。2、要求作业严格按照上述步骤进行。三、课内练习解下列不等式,并把解在数轴上表示出来:(1)5x-3<1-3x(2)3(1-3x)-2(4-2x)≤0(3)(2x-1)/4-(1+x)/6≥1四、小结:1、解一元一次不等式的基本步骤。2、不等式的解在数轴上的表示方法。五、作业:1、作业本2、每课一练一元一次不等式的解法(3)〖教学目标〗◆1、会根据具体问题中的数量关系列一元一次不等式.◆2、会利用一元一次不等式解决简单实际问题.〖教学重点与难点〗◆教学重点:利用一元一次不等式解决简单实际问题.◆教学难点:范例含较多的量,思路较复杂,学生不易理解,所以是本节课.〖课前准备〗学生课前进行预习,教师做多媒体课件〖教学过程〗复习复习:1、解一元一次不等式的步骤是怎样的?2、问题解决的四个步骤又是怎样的?(多媒体显示,加强学生的印象)二、新课教学1、合作学习宾馆里一座电梯的最大限载量为1000千克。两名宾馆服务员要用电梯把一批重物从底层搬到顶层,这两名服务员的身体质量分别为60千克和80千克,货物每箱的质量为50千克,问他们每次最多只能搬运重物多少箱?教师问:(1)这道题目应选择哪种数学模型?能用方程来解吗?还是别的数学模型呢?(2)问题中有哪些相等的数量关系和不等的数量关系?(要求学生分组进行讨论,然后分组发表各自的意见)教师总结:用一元一次不等式可以刻画和解决很多实际生活中的有关数量不等关系的问题,处理这类问题一般也可以按照问题解决的四个基本步骤来帮助思考和求解。(多媒体显示本题的相等和不等的数量关系)2、例题教学例:有家庭工厂投资2万元购进一台机器,生产某种商品。这种商品每个的成本是3元,出售价是5元,应付的税款和其他费用是销售收入的10%。问至少需要生产、销售多少个这种商品,才能使所获利润(毛利润减去税款和其他费用)超过投资购买机器的费用?教师先引导学生理解题意后分析:(1)先从所求出发考虑问题,至少需要生产、销售多少个商品使所获利润>购买机器款。(2)提出怎样计算“所获利润”的问题,每生产、销售一个这种商品的利润是多少元?生产、销售x个这种商品的利润是多少?这样我们只要设生产、销售这种商品x个就可以了。教师板书解题过程,对最后的答案进行说明。课堂巩固练习:书中P114课内练习。师生小结:列一元一次不等式解实际问题按照问题解决的四个基本步骤来思考和求解,关键是找出题目中的相等的数量关系和不等的数量关系。布置作业:1、作业本(1)P262、书上P114作业题。一元一次不等式的应用(1)教学目标知识与技能目标会解一元一次不等式的应用题。会根据实际问题的要求列出不等式,并求得符合实际问题要求的解。过程与方法目标列方程能解应用题,同样利用不等式也能解答应用题,通过观察、思考、分析,寻找不等关系,使问题得到解决。情感与价值目标通过一元一次不等式的应用的学习,实学生体会不等式和方程类似,同样是刻画现实世界数量关系的重要模型,通过把要解决的问题转化为已经能够顺利解决的问题,让学生进一步学习和体会“转化”思想在解题中的作用,提高学生的教学能力。课题简单的应用题教学过程创设情境,导入新课列方程解应用题:某次知识竞赛中,试题都是选择题,答对一题得5分,不答或答错不得分也不扣分。小张想在本次竞赛中得80分,请问他答对多少题?如果将题中改为“小张想在本次竞赛中得分不低于80分,请问他至少应答对多少题?”应该怎么解?这就是我们这节课要研究的问题。师生互动,课堂研究提出问题,引发讨论如何解决以上实际问题呢?通过讨论,分析“不低于”“至少”等语句所隐含的不等关系,列出不等式。解:设小张至少应该答对x道题,依题意得:5x≥80∴x≥16答:小张至少应该答对16道题㈡导入知识,解释疑难在“科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分,至少应答对多少题?分析:方法一设答对x道题可得10x-5(20-x)≥80方法二设答错x道题15x≤200-80方法三设答对x道题15x≥180答案都是答对12道题。例2.在一次“爱我中华”知识竞赛中,竞赛题共有25道,每道题都给出4个答案,其中有一个答案是对的,要求学生把正确地答案选出来,每道题选对得4分,不选或选错扣2分,如果要使得分不低于60分,那么至少应选对多少道题?解:设选对x道题可得4x-2(25-x)≥60解得x≥答:至少应选对19到题。㈢归纳总结,知识回顾列不等式解应用题的一般步骤:审题,弄清题目中的数量关系,用字母表示题中的一个未知数;找出能够表示应用题全部含义的一个不等式;根据不等式关系列出一元一次不等式;解不等式;作答。作业P637.一元一次不等式的应用(2)〖教学目标〗◆1、会列一元一次不等式组应用题.◆2、探索一元一次不等式组在解决实际问题中的应用.〖教学重点与难点〗◆教学重点:列一元一次不等式组解应用题.◆教学难点:例2的数量关系比较复杂,并涉及求整数解,是本节教学的难点.〖教学过程〗创设情景,引入新课:如图,已知每个砝码的质量为1克,请你估计物体A的质量.设物体A设物体A的质量为x克,每个砝码的质量为1我们可以得到:x>2x<3从而得:2<x<3,由此题引出课题.合作交流,探求新知:例1、小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时,爸爸的脚仍然着地。后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果小宝和妈妈的脚着地.猜猜小宝的体重约有多少千克?(精确到分析:从跷跷板的两种状况可以得到的关系:妈妈的体重+小宝的体重<爸爸的体重妈妈的体重+小宝的体重+6千克>解略.概括用一元一次不等式组解应用题的一般步骤(1)审:审题,分析题目中已知什么,求什么,明确各数量之间的关系(2)设:设适当的未知数(3)找:找出题目中的所有不等关系(4)列:列不等式组(5)解:求出不等式组的解集(6)答:写出符合题意的答案例2.某工厂用如图(见课本第118页)所示的长方形和正方形纸板,糊横式和竖式两种无盖的长方形包装盒,如图,现有长方形纸板351张,正方形纸板151张,要糊的两种包装盒的总数为100个.若按两种包装盒的生产个数分,问有几种生产方案?如果从原材料的利用率考虑,你认为应选择哪一钟方案?分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论