版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数的综合运用精选ppt题型一导数与函数图象精选ppt精选ppt点评:给定解析式求函数的图象是近几年高考重点,并且难度在增大,多数需要利用导数研究单调性知其变化趋势,利用导数求极值(最值)研究零点.精选ppt (2015·杭州质检)设函数f(x)=x2sinx,则函数f(x)的图象可能为()对点训练精选ppt【解析】因为f(-x)=(-x)2sin(-x)=-x2sinx=-f(x),所以f(x)是奇函数.又因为f′(x)=2xsinx+x2cosx,所以f′(0)=0,排除A;且当x∈[0,π]时,函数值为正实数,排除B;当x∈(π,2π)时,函数值为负实数,排除D,故选C.精选ppt例2(2015·沧州七校联考)设a为实数,函数f(x)=ex-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.【思路】(1)令f′(x)=0,求极值点,然后讨论在各个区间上的单调性.(2)构造函数g(x)=ex-x2+2ax-1(x∈R),注意到g(0)=0,只需证明g(x)在(0,+∞)上是增函数,可利用导数求解.题型二导数与不等式精选ppt【解析】(1)由f(x)=ex-2x+2a,x∈R,得f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.于是当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,ln2)ln2(ln2,+∞)f′(x)-0+f(x)单调递减2(1-ln2+a)单调递增故f(x)的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞).f(x)在x=ln2处取得极小值,极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a).精选ppt(2)设g(x)=ex-x2+2ax-1,x∈R.于是g′(x)=ex-2x+2a,x∈R.由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).又g(0)=0,从而对任意x∈(0,+∞),g(x)>0.即ex-x2+2ax-1>0,故ex>x2-2ax+1.精选ppt点评:利用导数工具,证明不等式的关键在于要构造好函数的形式,转化为研究函数的最值或值域问题,有时需用到放缩技巧.求证不等式f(x)≥g(x),一种常见思路是用图像法来说明函数f(x)的图像在函数g(x)图像的上方,但通常不易说明.于是通常构造函数F(x)=f(x)-g(x),通过导数研究函数F(x)的性质,进而证明欲证不等式.精选ppt对点训练精选ppt精选ppt精选ppt题型三导数与方程精选ppt精选ppt精选ppt精选ppt精选ppt精选ppt精选ppt点评:讨论方程根的个数或函数的零点,关键根据题意,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析解决.精选ppt对点训练精选ppt精选ppt精选ppt精选ppt例4(2015·江苏连云港二调)一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设∠BOC=θ,木梁的体积为V(单位:m3),表面积为S(单位:m2).题型四导数与最优化问题精选ppt(1)求V关于θ的函数表达式;(2)求θ的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.精选ppt精选ppt精选ppt精选ppt点评:生活中求利润最大、用料最省、效率最高等问题称之为优化问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- NB/T 11539-2024矿用物位传感器通用技术要求
- 中医医学经络腧穴学课件-奇穴
- 《学前社会教育》课件
- 2025届海南省部分学校高三上学期全真模拟(二)历史试卷(解析版)
- 2024-2025学年浙江省台州市十校联考高一上学期期中考试历史试题(解析版)
- 《物流仓储管理》课件
- 单位管理制度集合大全员工管理篇
- 《物流管理运输管理》课件
- 单位管理制度汇编大全员工管理
- 单位管理制度合并汇编【职工管理】
- 毛细管升高法测量液体表面张力系数
- 室内覆盖方案设计与典型场景
- 放射性粒子植入自我评估报告
- 2023年山西云时代技术有限公司招聘笔试题库及答案解析
- 浙大中控DCS系统介绍(简洁版)
- GB/T 16288-2008塑料制品的标志
- GB/T 14486-2008塑料模塑件尺寸公差
- 北京市海淀区2022-2023学年高三期末考试历史试题及答案
- 顶板管理实施细则
- 2022年杭州西湖文化旅游投资集团有限公司招聘笔试试题及答案解析
- 中国青年运动史PPT模板
评论
0/150
提交评论