高考数学 向量坐标法求异面直线所成角 上教_第1页
高考数学 向量坐标法求异面直线所成角 上教_第2页
高考数学 向量坐标法求异面直线所成角 上教_第3页
高考数学 向量坐标法求异面直线所成角 上教_第4页
高考数学 向量坐标法求异面直线所成角 上教_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

异面直线所成角的求法

——向量坐标法精选ppt(一)空间直角坐标系

精选pptxO数轴上的点与实数一一对应-1-2123AB1、数轴复习:精选pptxyPOxy(x,y)直角坐标平面内的点与有序实数对(x,y)一一对应。2、直角坐标平面精选ppt空间中,能否用坐标来表示任意一点的?精选pptoxyz

从空间某一个定点0引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系0-xyz.

点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xoy平面、yoz平面、和Zox平面.精选pptoxyz

在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.精选ppt右手直角坐标系空间直角坐标系—Oxyz横轴纵轴竖轴精选ppt空间直角坐标系的画法:oxyz1.X轴与y轴、x轴与z轴均成1350,而z轴垂直于y轴.135013502.y轴和z轴的单位长度相同,x轴上的单位长度为y轴(或z轴)的单位长度的一半.精选ppt空间直角坐标系中点的坐标的定义:oxyzAabc(a,b,c)经过A点作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴和z轴分别交于三点,三点在相应的坐标轴上的坐标a,b,c组成的有序实数组(a,b,c)叫做点A的坐标记为:A(a,b,c)精选ppt空间的点有序数组空间直角坐标系精选ppt精选ppt特殊位置的点的坐标原点:(0,0,0)X轴上的点:(x,0,0)Y轴上的点:(0,y,0)Z轴上的点:(0,0,z)Xoy平面上的点:(x,y,0)Yoz平面上的点:(0,y,z)Xoz平面上的点:(x,0,z)精选ppt(二)空间向量坐标法求异面直线所成角精选ppt1.空间向量的坐标精选ppt2、空间向量的正交分解单位正交基。精选ppt精选ppt(1)设A(x1,y1,z1),B(x2,y2,z2)则(x2-x1,y2-y1,z2-z1)3、空间向量的夹角公式。AB的中点=(a,b,c),则(2)设精选ppt(4)设(3)θ,θ:cosθ精选ppt4、异面直线所成角计算公式l1l2∣∣精选pptABA1B1DCD1C1xyzOM例1、在正方体ABCD-A1B1C1D1中,点M是AB的中点,求DB1与CM所成的角.arccos答案:精选ppt变式1、在正方体ABCD-A1B1C1D1中,点E,F分别是A1A,B1B的中点,求CE与D1F所成的角。ABA1B1DCD1C1xyzOEF答案:arccos精选ppt变式2、在正方体ABCD-A1B1C1D1中,点E,F分别是A1B1,C1D1的一个四等分点,求BE与DF所成角的余弦值.ABA1B1DCD1C1xyzOEF答案:arccos精选pptABA1B1DCD1C1xyzO变式3:在正方体ABCD-A1B1C1D1中,点E,F分别是BB1,D1B1的中点,求证:EF⊥DA1.EF精选ppt1.建立适当的空间直角坐标系;2.求两异面直线对应的方向向量;3.借助向量夹角公式求出两异面直线所成角。一般步骤向量法求两条异面直线所成的角关键:(1)建立适当的空间直角坐标系;

(2)确定相关点的坐标。精选ppt1、已知正方体ABCD-A1B1C1D1,求A1B和B1C的夹角。DCABxyzA1B1D1C1O练习(一)基础型答案:600精选ppt2、在正方体ABCD-A1B1C1D1中,点E,F分别是D1C1,AA1的中点,(1)求DE与AC所成角的余弦值.(2)求证:BF⊥DE.ABA1B1DCD1C1xyzOEF答案:(1)arccos精选ppt已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠BAD=900,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中点。求AC与PB所成角的余弦值;

..(二)提高型

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论