版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版七年级数学下册《平行线的性质与判定》解答题专项练习1.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠PAG的度数.2.如图,已知△ABC.求证:∠A+∠B+∠C=180°.3.如图,已知AC∥DE,DC∥EF,CD平分∠BCD.求证:EF平分∠BED.4.如图,已知∠ABC=180°-∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.5.如图,已知AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.6.如图,M、N、T和A、B、C分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.7.如图,已知DE⊥AO于点E,BO⊥AO于点O,∠CFB=∠EDO.证明:CF∥DO.8.(1)如图(1),已知任意三角形ABC,过点C作DE∥AB.求证:∠DCA=∠A;(2)如图(1),求证:三角形ABC的三个内角(即∠A、∠B、∠ACB)之和等于180°;(3)如图(2),求证:∠AGF=∠AEF+∠F;(4)如图(3),AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°.求∠F.9.如图,已知AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD之间的关系,请你从所得到的关系中任选一个加以证明。(1)在图1中,∠APC与∠PAB,∠PCD之间的关系是:.(2)在图2中,∠APC与∠PAB,∠PCD之间的关系是:.(3)在图3中,∠APC与∠PAB,∠PCD之间的关系是:.(4)在图4中,∠APC与∠PAB,∠PCD之间的关系是:.(5)在图中,求证:.10.如图,点D为射线CB上一点,且不与点B、C重合,DE∥AB交直线AC于点E,DF∥AC交直线AB于点F.画出符合题意的图形,猜想∠EDF与∠BAC的数量关系,并说明理由.11.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.12.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)求证:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.13.如图,在△ABC中,点D在BC上,点E在AC上,AD交BE于F.已知EG∥AD交BC于G,EH⊥BE交BC于H,∠HEG=50°.(1)求∠BFD的度数.(2)若∠BAD=∠EBC,∠C=41°,求∠BAC的度数.14.如图,已知∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.15.(1)读读做做:平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决教材中的问题:如图①,AB∥CD,则∠B+∠D
∠E(用“>”、“=”或“<”填空);(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.(3)灵活应用如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM.求证:∠CAM=∠BAN.16.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系
;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
答案1.证明:由DB∥FG∥EC,可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP平分∠BAC得∠CAP=∠BAC=×96°=48°.由FG∥EC得∠GAC=ACE=36°.∴∠PAG=48°-36°=12°.2.证明:如图,延长BC到D,过点C作CE∥BA,∵BA∥CE,∴∠B=∠1(两直线平行,同位角相等),∠A=∠2(两直线平行,内错角相等),又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).3.证明:∵AC∥DE(已知),∴∠1=∠5(两直线平行,内错角相等).同理∠5=∠3.∴∠1=∠3(等量代换).∵DC∥EF(已知),∴∠2=∠4(两直线平行,同位角相等).∵CD平分∠ACB,∴∠1=∠2(角平分线定义),∴∠3=∠4(等量代换),∴EF平分∠BED(角平分线定义).4.(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.5.证明:过点E作EF∥AB.∴∠BEF=∠B(两直线平行,内错角相等).∵∠B=∠1,∴∠BEF=∠1(等量代换).同理可证:∠DEF=∠2.∵∠1+∠BEF+∠DEF+∠2=180°(平角定义),即2∠BEF+2∠DEF=180°,∴∠BEF+∠DEF=90°(等式性质).即∠BED=90°.∴BE⊥DE(垂直的定义).6.先证明PN∥QT,再证明PQ∥TN7.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO(同位角相等,两条直线平行),∴∠EDO=∠BOD(两直线平行,内错角相等),∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO(同位角相等,两条直线平行).8.证明:(1)∵DE∥BC,∴∠DCA=∠A;(2)如图1所示,在△ABC中,∵DE∥BC,∴∠B=∠1,∠C=∠2(内错角相等).∵∠1+∠BAC+∠2=180°,∴∠A+∠B+∠C=180°.即三角形的内角和为180°;(3)∵∠AGF+∠FGE=180°,由(2)知,∠GEF+∠EG+∠FGE=180°,∴∠AGF=∠AEF+∠F;(4)∵AB∥CD,∠CDE=911°,∴∠DEB=119°,∠AED=61°,∵GF交∠DEB的平分线EF于点F,∴∠DEF=59.5°,∴∠AEF=120.5°,∵∠AGF=150°,∵∠AGF=∠AEF+∠F,∴∠F=150°﹣120.5°=29.5°.9.解:(1)∠APC+∠PAB+∠PCD=360°;(2)∠APC=∠PAB+∠PCD;(3)∠PAB=∠APC+∠PCD;(4)∠PCD=∠APC+∠PAB.(5)在图2中,求证:∠APC=∠PAB+∠PCD.证明:过P点作PE∥AB,∴∠1=∠PAB.又∵AB∥CD,PE∥CD,∴∠2=∠PCD,∴∠1+∠2=∠PAB+∠PCD,而∠APC=∠1+∠2,∴∠APC=∠PAB+∠PCD.10.解:当点D在线段CB上时,如图①,∠EDF=∠BAC.证明:∵DE∥AB(已知),∴∠1=∠BAC(两直线平行,同位角相等).∵DF∥AC(已知),∴∠EDF=∠1(两直线平行,内错角相等).∴∠EDF=∠BAC(等量代换).当点D在线段CB的延长线上时,如图②,∠EDF+∠BAC=180°,证明:∵DE∥AB(已知),∴∠EDF+∠F=180°(两直线平行,同旁内角互补).∵DF∥AC(已知),∴∠F=∠BAC(两直线平行,内错角相等).∴∠EDF+∠BAC=180°(等量代换).11.证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.12.(1)略;(2)∠O+∠PFC=∠BEO+∠P.13.解:(1)∠BFD=40°(2)∠BAC=99°14.证明:∵∠3=∠4,∴AC∥BD.∴∠6+∠2+∠3=180°.∵∠6=∠5,∠2=∠1,∴∠5+∠1+∠3=180°.∴ED∥FB.15.(1)解:过E作EF∥AB,如图①所示:则EF∥AB∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠B+∠D=∠BEF+∠DEF,即∠B+∠D=∠BED;故答案为:=;(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;该逆命题为真命题;理由如下:过E作EF∥AB,如图①所示:则∠B=∠BEF,∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠BED﹣∠B,∠DEF=∠BED﹣∠BEF,∴∠D=∠DEF,∴EF∥CD,∵EF∥AB,∴AB∥CD;(3)证明:过点N作N
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论