版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山东省莱芜市普通高校对口单招高等数学一自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.方程2x2-y2=1表示的二次曲面是().A.A.球面B.柱面C.旋转抛物面D.圆锥面
2.
3.设y=sinx,则y'|x=0等于().A.1B.0C.-1D.-2
4.设y=e-2x,则y'于().A.A.2e-2xB.e-2xC.-2e-2xD.-2e2x
5.
6.如图所示两楔形块A、B自重不计,二者接触面光滑,受大小相等、方向相反且沿同一直线的两个力的作用,则()。
A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡
7.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),则在(0,1)内曲线y=f(x)的所有切线中().A.A.至少有一条平行于x轴B.至少有一条平行于y轴C.没有一条平行于x轴D.可能有一条平行于y轴
8.已知作用在简支梁上的力F与力偶矩M=Fl,不计杆件自重和接触处摩擦,则以下关于固定铰链支座A的约束反力表述正确的是()。
A.图(a)与图(b)相同B.图(b)与图(c)相同C.三者都相同D.三者都不相同
9.A.A.
B.
C.
D.
10.
11.力偶对刚体产生哪种运动效应()。
A.既能使刚体转动,又能使刚体移动B.与力产生的运动效应有时候相同,有时不同C.只能使刚体转动D.只能使刚体移动
12.
13.
A.
B.
C.
D.
14.
15.
16.
17.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)18.设f(x)在点x0处连续,则下列命题中正确的是().A.A.f(x)在点x0必定可导B.f(x)在点x0必定不可导C.必定存在D.可能不存在
19.
20.下列反常积分收敛的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
二、填空题(20题)21.22.
23.
24.
25.过点M1(1,2,-1)且与平面x-2y+4z=0垂直的直线方程为__________。
26.设y=ln(x+2),贝y"=________。
27.设y=cosx,则dy=_________。
28.当x=1时,f(x)=x3+3px+q取到极值(其中q为任意常数),则p=______.
29.
30.
31.32.微分方程y''+y=0的通解是______.
33.
34.
35.36.
37.
38.函数y=cosx在[0,2π]上满足罗尔定理,则ξ=______.
39.函数f(x)=ex,g(x)=sinx,则f[g(x)]=__________。
40.
三、计算题(20题)41.
42.
43.44.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
45.求微分方程y"-4y'+4y=e-2x的通解.
46.当x一0时f(x)与sin2x是等价无穷小量,则47.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.48.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.49.求微分方程的通解.50.51.
52.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
53.
54.求曲线在点(1,3)处的切线方程.55.56.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.57.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
58.证明:59.将f(x)=e-2X展开为x的幂级数.60.求函数f(x)=x3-3x+1的单调区间和极值.四、解答题(10题)61.计算62.63.64.
65.设且f(x)在点x=0处连续b.
66.67.已知f(x)在[a,b]上连续且f(a)=f(b),在(a,b)内f''(x)存在,连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于C(c,f(c))且a<c<b,试证在(a,b)内至少有一点ξ使得f''(ξ)=0.
68.
69.计算70.计算二重积分
,其中D是由直线
及y=1围
成的平面区域.五、高等数学(0题)71.设f(x)在x=0处有二阶连续导数
则x=0是f(x)的()。
A.间断点B.极大值点C.极小值点D.拐点六、解答题(0题)72.
参考答案
1.B本题考查的知识点为识别二次曲面方程.
由于二次曲面的方程中缺少一个变量,因此它为柱面方程,应选B.
2.C解析:
3.A由于
可知应选A.
4.C本题考查的知识点为复合函数求导.
可知应选C.
5.A
6.C
7.A本题考查的知识点有两个:罗尔中值定理;导数的几何意义.
由题设条件可知f(x)在[0,1]上满足罗尔中值定理,因此至少存在一点ξ∈(0,1),使f'(ξ)=0.这表明曲线y=f(x)在点(ξ,f(ξ))处的切线必定平行于x轴,可知A正确,C不正确.
如果曲线y=f(x)在点(ξ,f(ξ))处的切线平行于y轴,其中ξ∈(0,1),这条切线的斜率为∞,这表明f'(ξ)=∞为无穷大,此时说明f(x)在点x=ξ不可导.因此可知B,D都不正确.
本题对照几何图形易于找出解答,只需依题设条件,画出一条曲线,则可以知道应该选A.
有些考生选B,D,这是由于不明确导数的几何意义而导致的错误.
8.D
9.C
10.B
11.A
12.D
13.D
故选D.
14.D
15.B
16.C
17.C本题考查的知识点为判定函数的单调性。
18.C本题考查的知识点为极限、连续与可导性的关系.
函数f(x)在点x0可导,则f(x)在点x0必连续.
函数f(x)在点x0连续,则必定存在.
函数f(x)在点x0连续,f(x)在点x0不一定可导.
函数f(x)在点x0不连续,则f(x)在点x0必定不可导.
这些性质考生应该熟记.由这些性质可知本例应该选C.
19.D
20.DA,∫1+∞xdx==∞发散;
21.
22.
23.
24.-ln2
25.
26.
27.-sinxdx
28.-1f'(x)=3x2+3p,f'(1)=3十3p=0,所以p=-1.
29.
30.
解析:
31.32.y=C1cosx+C2sinx微分方程y''+y=0的特征方程是r2+1=0,故特征根为r=±i,所以方程的通解为y=C1cosx+C2sinx.
33.
解析:
34.
35.36.1.
本题考查的知识点为二元函数的极值.
可知点(0,0)为z的极小值点,极小值为1.
37.3yx3y-13yx3y-1
解析:
38.π39.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx
40.
41.
42.
43.
44.由二重积分物理意义知
45.解:原方程对应的齐次方程为y"-4y'+4y=0,
46.由等价无穷小量的定义可知
47.
48.
列表:
说明
49.
50.
51.
则
52.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%53.由一阶线性微分方程通解公式有
54.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
55.
56.
57.
58.
59.60.函数的定义域为
注意
61.本题考查的知识点为不定积分的换元积分运算.
62.
63.
64.
65.
66.67.由题意知f(a)=f(b)=f(c),在(a,c)内有一点η1,使得f'(η1)=0,在(c,6)内有一点η2,使得f'(η2)=0,这里a<η1<c<b,再由罗尔定理,知在(η1,η2)内有一点ξ使得f''(ξ)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高速公路工程结构设计与施工合同3篇
- 二零二五年车辆融资租赁购车合同模板(含车辆品牌置换)3篇
- 二零二五年度无人驾驶技术研发合同简易执行版2篇
- 2025年新型建筑旋挖桩基劳务分包施工质量保证合同2篇
- 买卖门市合同协议书范本2篇
- 2025年建筑施工团队合作协议3篇
- 二零二五版进口货物CIF和FOB价格条款服务合同2篇
- 二零二五年音乐节DJ艺人聘用及保障协议3篇
- 个性化劳动合作协议(2024年版)一
- 二零二五版软件开发许可协议:定制化企业信息管理系统开发
- 人教版小学数学五年级上册口算心算天天练 全册
- 青岛版(五年制)四年级下册小学数学全册导学案(学前预习单)
- 退学费和解协议书模板
- 2024至2030年中国对氯甲苯行业市场全景调研及发展趋势分析报告
- 智能教育辅助系统运营服务合同
- 心功能分级及护理
- DLT 572-2021 电力变压器运行规程
- 重庆育才中学2025届化学九上期末教学质量检测试题含解析
- 成都市2022级(2025届)高中毕业班摸底测试(零诊)数学试卷(含答案)
- 【云南省中药材出口现状、问题及对策11000字(论文)】
- 服装板房管理制度
评论
0/150
提交评论