2023年宁夏回族自治区固原市普通高校对口单招数学自考模拟考试(含答案)_第1页
2023年宁夏回族自治区固原市普通高校对口单招数学自考模拟考试(含答案)_第2页
2023年宁夏回族自治区固原市普通高校对口单招数学自考模拟考试(含答案)_第3页
2023年宁夏回族自治区固原市普通高校对口单招数学自考模拟考试(含答案)_第4页
2023年宁夏回族自治区固原市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年宁夏回族自治区固原市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为A.1

B.2

C.

D.2

2.若sinα与cosα同号,则α属于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角

3.若将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期后,所得图象对应的函数为()A.y=2sin(2x+π/4)

B.y=2sin(2x+π/3)

C.3;=2sin(2x-π/4)

D.3;=2sin(2x-π/3)

4.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A.3/4B.5/8C.1/2D.1/4

5.A.B.C.D.

6.已知椭圆的一个焦点为F(0,1),离心率e=1/2,则该椭圆的标准方程为()A.x2/3+y2/4=1

B.x2/4+y2/3=1

C.x2/2+y2=1

D.y2/2+x2=1

7.若集合A={0,1,2,3,4},A={1,2,4},则A∪B=()A.|0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}

8.在等差数列中,若a3+a17=10,则S19等于()A.75B.85C.95D.65

9.cos215°-sin215°=()A.

B.

C.

D.-1/2

10.A.B.C.D.

11.已知A是锐角,则2A是A.第一象限角B.第二象限角C.第一或第二象限角D.D小于180°的正角

12.在等差数列{an}中,如果a3+a4+a5+a6+a7+a8=30,则数列的前10项的和S10为()A.30B.40C.50D.60

13.过点M(2,1)的直线与x轴交与P点,与y轴交与交与Q点,且|MP|=|MQ|,则此直线方程为()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=0

14.A.-1B.-4C.4D.2

15.设集合A={1,2,4},B={2,3,4},则A∪B=()A.{1,2}B.{2,4}C.{1,2,3,4}D.{1,2,3}

16.已知{<an}为等差数列,a3+a8=22,a6=7,则a5=()</aA.20B.25C.10D.15

17.已知P:x1,x2是方程x2-2y-6=0的两个根,Q:x1+x2=-5,则P是Q的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件

18.若等比数列{an}满足,a1+a3=20,a2+a4=40,则公比q=()A.1B.2C.-2D.4

19.已知集合,则等于()A.

B.

C.

D.

20.椭圆的焦点坐标是()A.(,0)

B.(±7,0)

C.(0,±7)

D.(0,)

二、填空题(10题)21.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.

22.

23.数列{an}满足an+1=1/1-an,a2=2,则a1=_____.

24.

25.已知α为第四象限角,若cosα=1/3,则cos(α+π/2)=_______.

26.若△ABC中,∠C=90°,,则=

27.

28.

29.

30.10lg2=

三、计算题(5题)31.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

32.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

33.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

34.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

35.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

四、简答题(10题)36.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长

37.解不等式组

38.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。

39.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

40.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.

41.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。

42.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。

43.在等差数列中,已知a1,a4是方程x2-10x+16=0的两个根,且a4>a1,求S8的值

44.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

45.简化

五、证明题(10题)46.

47.己知sin(θ+α)=sin(θ+β),求证:

48.若x∈(0,1),求证:log3X3<log3X<X3.

49.△ABC的三边分别为a,b,c,为且,求证∠C=

50.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

51.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

52.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

53.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

54.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.

55.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

六、综合题(2题)56.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

57.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

参考答案

1.C点到直线的距离公式.圆(x+l)2+y2=2的圆心坐标为(-1,0),由y=x+3得x-y+3=0,则圆心到直线的距离d=

2.D

3.D三角函数图像性质.函数y=2sin(2x+π/6)的周期为π,将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期即π/4个单位,所得函数为y=2sin[2(x-π/4)+π/6]=2sin(2x-π/3)

4.C随机抽样的概率.分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P=1/2.故选C

5.B

6.A椭圆的标准方程.由题意得,椭圆的焦点在y轴上,且c=l,e=c/a=1/2,故a=2,b=则補圆的标准方程为x2/3+y2/4=1

7.A集合的并集.A∪B是找出所有元素写在同一个集合中.

8.C

9.B余弦的二倍角公式.由余弦的二倍角公式cos2α=cos2α-sin2α可得cos215°-sin215°=cos30°=/2,

10.D

11.D

12.C

13.D

14.C

15.C集合的并集.由两集合并集的定义可知,A∪B={1,2,3,4},故选C

16.D由等差数列的性质可得a3+a8=a5+a6,∴a5=22-7=15,

17.A根据根与系数的关系,可知由P能够得到Q,而已知x1+x2=5,并不能推出二者是原方程的根,所以P是Q的充分条件。

18.B解:设等比数列{an}的公比为q,∵a1+a3=20,a2+a4=40,∴q(a1+a3)=20q=40,

解得q=2.

19.B由函数的换算性质可知,f-1(x)=-1/x.

20.D

21.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.

22.33

23.1/2数列的性质.a2=1/1-a1=2,所以a1=1/2

24.(-∞,-2)∪(4,+∞)

25.

利用诱导公式计算三角函数值.∵α为第四象限角,∴sinα-

26.0-16

27.56

28.π/2

29.π/4

30.lg102410lg2=lg1024

31.

32.

33.

34.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

35.

36.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则

37.x2-6x+8>0,∴x>4,x<2(1)(2)联系(1)(2)得不等式组的解集为

38.

∵μ//v∴(2x+1.4)=(2-x,3)得

39.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

40.

41.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)

42.

43.方程的两个根为2和8,又∴又∵a4=a1+3d,∴d=2∵。

44.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=

PD=PC=2

45.

46.

47.

48.

49.

50.

51.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B

52.

∴PD//平面ACE.

53.

54.证明:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论