版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年山东省临沂市成考专升本高等数学一自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.f(x)在x=0的某邻域内一阶导数连续且则()。A.x=0不是f(x)的极值点B.x=0是f(x)的极大值点C.x=0是f(x)的极小值点D.x=0是f(x)的拐点
2.
3.=()。A.
B.
C.
D.
4.函数f(x)=5x在区间[-1,1]上的最大值是A.A.-(1/5)B.0C.1/5D.5
5.
6.
A.0
B.
C.1
D.
7.
A.仅有水平渐近线
B.既有水平渐近线,又有铅直渐近线
C.仅有铅直渐近线
D.既无水平渐近线,又无铅直渐近线
8.过点(1,0,0),(0,1,0),(0,0,1)的平面方程为().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
9.已知作用在简支梁上的力F与力偶矩M=Fl,不计杆件自重和接触处摩擦,则以下关于固定铰链支座A的约束反力表述正确的是()。
A.图(a)与图(b)相同B.图(b)与图(c)相同C.三者都相同D.三者都不相同
10.曲线y=x2+5x+4在点(-1,0)处切线的斜率为
A.2B.-2C.3D.-311.对于微分方程y"-2y'+y=xex,利用待定系数法求其特解y*时,下列特解设法正确的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
12.
13.某技术专家,原来从事专业工作,业务精湛,绩效显著,近来被提拔到所在科室负责人的岗位。随着工作性质的转变,他今后应当注意把自己的工作重点调整到()
A.放弃技术工作,全力以赴,抓好管理和领导工作
B.重点仍以技术工作为主,以自身为榜样带动下级
C.以抓管理工作为主,同时参与部分技术工作,以增强与下级的沟通和了解
D.在抓好技术工作的同时,做好管理工作
14.
15.设函数f(x)=(x-1)(x-2)(x-3),则方程f(x)=0有()。A.一个实根B.两个实根C.三个实根D.无实根
16.设y=3+sinx,则y=()A.-cosxB.cosxC.1-cosxD.1+cosx
17.A.A.0
B.
C.
D.∞
18.
19.
20.
二、填空题(20题)21.
22.
23.
24.
25.
26.
=_________.
27.设函数y=x2lnx,则y=__________.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.设y=cos3x,则y'=__________。
39.
40.
三、计算题(20题)41.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
42.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
43.求微分方程的通解.
44.求微分方程y"-4y'+4y=e-2x的通解.
45.当x一0时f(x)与sin2x是等价无穷小量,则
46.
47.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
48.求曲线在点(1,3)处的切线方程.
49.
50.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
51.将f(x)=e-2X展开为x的幂级数.
52.证明:
53.
54.求函数f(x)=x3-3x+1的单调区间和极值.
55.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
56.
57.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.
58.
59.
60.
四、解答题(10题)61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
五、高等数学(0题)71.某厂每天生产某产品q个单位时,总成本C(q)=0.5q2+36q+9800(元),问每天生产多少时,平均成本最低?
六、解答题(0题)72.
参考答案
1.A∵分母极限为0,分子极限也为0;(否则极限不存在)用罗必达法则同理即f"(0)一1≠0;x=0不是驻点∵可导函数的极值点必是驻点∴选A。
2.C解析:
3.D
4.Df(x)=5x,f'(x)=5xln5>0,可知f(x)在[-1,1]上单调增加,最大值为f(1)=5,所以选D。
5.D
6.A
7.A
8.A设所求平面方程为.由于点(1,0,0),(0,1,0),(0,0,1)都在平面上,将它们的坐标分别代入所设平面方程,可得方程组
故选A.
9.D
10.C解析:
11.D特征方程为r2-2r+1=0,特征根为r=1(二重根),f(x)=xex,α=1为特征根,因此原方程特解y*=x2(Ax+B)ex,因此选D。
12.C
13.C
14.B
15.B
16.B
17.A本题考查的知识点为“有界变量与无穷小量的乘积为无穷小量”的性质.这表明计算时应该注意问题中的所给条件.
18.C
19.C解析:
20.C
21.
本题考查的知识点为可分离变量方程的求解.
可分离变量方程求解的一般方法为:
(1)变量分离;
(2)两端积分.
22.2
23.
24.
本题考查的知识点为微分的四则运算.
注意若u,v可微,则
25.2x+3y.
本题考查的知识点为偏导数的运算.
26.
。
27.
28.
解析:
29.
30.
31.x=-3
32.本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,由于
33.
34.
本题考查的知识点为不定积分的换元积分法.
35.-3sin3x-3sin3x解析:
36.
37.In2
38.-3sin3x
39.
本题考查了一元函数的一阶导数的知识点。
40.
41.
42.由二重积分物理意义知
43.
44.解:原方程对应的齐次方程为y"-4y'+4y=0,
45.由等价无穷小量的定义可知
46.
47.
48.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
49.
50.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
51.
52.
53.
54.函数的定义域为
注意
55.
56.由一阶线性微分方程通解公式有
57.
列表:
说明
58.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁现代服务职业技术学院《生物学教学艺术与教学设计》2023-2024学年第一学期期末试卷
- 兰州工商学院《半导体器件制造及测试技术》2023-2024学年第一学期期末试卷
- 吉林艺术学院《结构稳定》2023-2024学年第一学期期末试卷
- 湖南税务高等专科学校《风景区规划与设计》2023-2024学年第一学期期末试卷
- 湖南电子科技职业学院《城市修建性详细规划》2023-2024学年第一学期期末试卷
- 黑龙江生态工程职业学院《园林植物生物技术》2023-2024学年第一学期期末试卷
- 重庆艺术工程职业学院《影视动画制作》2023-2024学年第一学期期末试卷
- 重庆机电职业技术大学《机器学习与模式识别II(双语)》2023-2024学年第一学期期末试卷
- 中央司法警官学院《建筑空间生活》2023-2024学年第一学期期末试卷
- 浙江农林大学《社区管理与服务》2023-2024学年第一学期期末试卷
- 派克比例阀中文说明书
- 高一学生心理素质描述【6篇】
- 给男友的道歉信10000字(十二篇)
- 2020年高级统计实务与案例分析真题及答案
- 全面质量管理(TQM)基本知识
- 练字本方格模板
- 产品供货质量保障措施
- 电力电缆高频局放试验报告
- JJG 517-2016出租汽车计价器
- JJF 1914-2021金相显微镜校准规范
- GB/T 32045-2015节能量测量和验证实施指南
评论
0/150
提交评论