版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
--最新人教版七年级学上册培优辅导讲义第讲与理数有关的概念考点·方法·破译1了解负数的产生程,能够用正、负数表示具有相反意义的量2.会进行有理的分类,体会运用数学中的分类思.3理解数轴、相反、绝对值、倒数的意义.会用数轴比较两个有理数的大小会求一个数的相反数对值倒数.经典·考题·赏析【例】写出下列各句的实际意义⑴向前米⑵收人-⑶重增加-千克【解法指导】用正、数表示实际问题中具有相反意义的量.而相反意义的量该包合两个要素:一是它们的意义相反.二是它们具有数.而且必须是同类两,如“向前与自后、收入与支出、增与减少等等”解:⑴向前7米表示向后7⑵收入-50元示支出元⑶体重增加-千克表示体减小3千克【变式题组】0110%表示增加10%减少可以记)A-18%B.-8%C.+2%D.+8%02华)如果3吨表示运入仓的大米吨数,那么运出吨大米表示为).5吨.+5吨.3吨D.+03西)北京与纽约的时差13(负号表示同一时纽约时间比北京晚).如现在是北京时间15:00,纽约时问是____---
33负整数33--33负整数3322【例2-,7
.
这四个数中有理数的)A1个.2个C3个D.4个【解法指导】有理数分类:⑴按正负性分类,有理数正有理数数
正分数负份数
;整数0()整数、分数分类,有;其分数包括数分数分数有限小数和无限循环数,因为π…是无限不循环小数,它不能写分数的形式,所以π是有理数,-227
是分数,
是无限循环小数可以成分数形式整数,所以都是有理,故选C.【变式题组】1101在7,0,15,-,-301,-,100,1,28-001分为为,正整数.02秦皇岛)请把下列各数填入中适当位置15,-1213,,-,0.1,-5.32,123,2.333915811111【例3有一数为-,,-,…,2345---
--找规律到第2007个数是.解法指导从一系列的数中发现规律,首先找不变量和变量,再依变量去发现规律.归纳去猜想后行验证解本题会有这样规律:⑴各数的分子部是;⑵各数的分母依次为,,,,6…⑶处于奇数位的数是负数,处于偶数位置的数是正数,所以第2007个的分也是.分母是2007,并且是一个负数,故答案-
12007
.【变式题组】01湖北宜昌)数学解密:第一个数3=2+1第二个数是5=3+2第三个数是9=5+4,第四个数是17=+8…观察并猜想第六个是.02哥拉斯学派发明了一“馨折形”填数法,如图则?填___.03名)有一组数125,1017,26…请观规律,则第8数为_.m【例4年北张家口)若1+的相反数是-3,2则m的反数是___.【解法指导】理解相数的代数意义和几何意义,代数意义只有符号不同的两个叫互为相反.几何意义数轴上原点的两旁且离原的距离相等的两个点所表示的m数叫互为相反数本=2,m=4则m的反数-24。【变式题组】01宜宾)5相反数是()1AB.C.-5D.-55---
--02已知与b互相反数,c与d互为倒数,则a+b+cd=______03如图为一个正方体纸盒的展开图若在其中的三个正方形A、B、C内分别人适当的数得它们折成正体.若相对的面上的两数互为相反数,则填入正方形A、、C的三个数依次为)A-1,B.,-2C.-20,D,,【例5ab为有理a>0<|b|>则a,b、--的小顺序是()A<-aa<-bB.–<b<-C.–ba<-<D.–a<a<<b【解法指导】理解绝值的几何意义:一个数的绝对值就是数轴上表示a的点原点的距,即a|,用式子表示|a|=
a0((0)
.本题注意数形结合思想,画条数轴标出a、b,相反数的意义标出--a,故选A.【变式题组】01推理①若a=,|a|=;②|a|=则=;若a≠b,则a|≠|b|;④若|a|≠|b|则a≠b,其中正确的个数为A4个.3个C2个D.1个02个数在数轴上的位置如图|b||c|++=.bc---
|a|a
--abc03a、b、不等于O的理数,则++的|a||b||c|值可能是____.a+b【例6西课改已|-4|+-=,则的ab值【解法指导】本题主考查绝对值概念的运用,因为任何有理数a绝对值都是非负数|a|≥0以a-4|≥0|b-8|≥0.而两个非负数之和为0,则两数均为0.解:因为a-4|≥0,|b-8|≥0,又|a4|+8|0-4|=0-8|=0即-4-=0,a+b123a=,b=8.故==ab328【变式题组】01已|a|=,=,=3且b>c求a+b+C02|m-3|+2|0m2n的值为)A-B-C.0D.03已知|,|b|2,a=-a,求a和的值【例718迎春杯知m+n)2|m|=m|2m--0.求mn值.【解法指导例的键是通过分析(mn)2+|m|的符,挖掘出符号特征,从而把题转化为(m+n)=0|2m--0,找到解题途径.解∵(m+2≥0+n)2+|m|≥0而---
--(mn)2+|m|=∴≥0,∴(m+n)+mm,即(mn)2=∴m+n=O①又∵|2m-n-2|=0--2=0②22由①②得m=,=-,mn=33【变式题组】01知ab)2+=b+5|2ab–1|求a-.02届迎春杯已知y=|xa|+|x+19|+|x-a-96|,如果<<.a≤x≤96,求y最大值演练巩固·反馈提高11101观察下列有规律的数,,,,,…据其规律可26122042知第个数是)111AB.C.D.56729011002)-的绝对值是()A6B.-C
11D.-662203在-,π,8.7
.0.3
四个数中,有理数的数为)A1个B.2个C.3个D.4个04若一个数的相反数为+,则这个数是().a-a.–bD–----
--05数轴上表示互为相反数的两点之距离是,这两个数是).0和6.0和.3-3D0和306若-是负数则a().是正.不是数.是数D不是正数07论中的是()①若a=则a|=|b|②若a=-b,则a|=|b|若a|=|b|,则a=-b④若a|=|b|,则a=A.①②.③C.①④D.②08有理数a、数轴上的对应点的位置如所,则ab,-,|b|的大小关系正确的()A|b|>a>>B|b|>>>-C.a>|b|>>-aDa>|b|>->09一个数在数轴上所对应的点向右动5个单位后到它的相反数的对应点则这个数___.10已知|x++|y2|=0则____.|a||b|11a、b、三个数在数轴上的位置如,求ab|abc||c|+=abcc12若三个不相等的有理数可以表示1aab也可以b表示成0、、的形式,试、b的a---
--13已|a|=,=,=6且b>c求a+bc14|a|具有非负,也有最小值为,讨论:当x有理数时|x-1|+|x-3|有有最小值,如果有,求出最小值;如果没有,说理由15点B在数轴上分别表示数aAB两点之间的距离表示为AB|当A两点中有一点在原点时,不妨设点A在原,如图,|AB|=|OB||b|-b|当A点都不在原点时有以下三种情况①如图2A、B都在原点的右边|AB|=|OA|=-|a|b-=b|;②如图3,AB都原点的左边|AB|=|OB|-|OA|=|b||a|=---a)=b|③如图4点AB在原点的两边|AB|=|OA|=-=--(-a)|ab|综上,轴AB两之间的距离AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是,数轴表示2和-的两点之间的离是,,数轴上表示和-的两点间的距离是;⑵数轴上表示x和-1的点分别是点AB则A、之间的距离是,如果|AB|,那么x;⑶当代数式x++|x-2|取最小值时,应的x的取值---
--范围是.培优升级·奥赛检测101庆市竞赛题)在数轴上任取一长度为1999的线9段,则此线段在这条轴上最多能盖住的整数点的个数是()A1998B.1999C.2000D.20010218希望杯请赛试题数上和有理数a、c对应的点的位置如所示,有下列四个结论:①abc0;②+|b-c||a-c|b-c)(c-a)>;④<1-bc.其正确的结论有)A4B.3个C个.1个03果abc是非零有理且+b+0那么
a|a|bcabc++-|b||c||abc|
的所有可能的值为()A-B.1或-1C2或-2D0或-04.已|=m化|-||m-所得结果()A-B.1C.2m-D.3-2m05.如果0p<15那么代数|x-p|+|x-15|+|x--15|在p≤≤最小值)A30B.0C.15D.一与有关的数式06|x1|+|x-2|+|x-最小值为.07若a>0,<0,使|a|+|x-=-成立的x---
--取值范围.08汉选拔赛试题)非零整数足m|+|n|-=0有这样的整数组mn)共有|m||n||p|09若非零有理数mnp满足+=.mn2mnp|3mnp|
=.10届望杯试题)试求|x-+|x-2|+|x-3|+…+1997|的最小值.11已(|x+1|+|x-(|y-2|+|y+-3|++1|)=,x+的最大值和最小值.12电子跳蚤落在数轴上的某点k,一步从k向左跳10个单位得,二步由k向跳211个单位到,三步由k向左跳3个单位到k,第四步由2k向右跳单位到…以上规3律跳100步时,电子跳蚤落在数轴上的点k新示的数100恰好19.94试求所示的数.0---
--13某城镇,沿环形路上依次排列有所小学,它们顺次有电脑15台、台11、,14台,为使各学校电脑数相同,允许一些学向相邻小学调出电脑,问怎样调配才能使调出的电脑总数最小?并求出调出电脑的最少总台.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了有理数加法的实际意.2准确运用有理数法法则进行运算,能将实际问题转化为有理数的加法运算3理解有理数减法加法的转换关系,会用有理数减法解决生活中的实际问题4.会把加减混合运算统一成法运算,并能准确求.经典·考题·赏析【例1唐山某股票A开盘价18元上11:30跌了1.5元下午收盘时又涨0.3则股票A天收盘价为()A元B.元C.16.8元D元【解法指导】将实际题转化为有理数的加法运算时,首先将具有相反意义的量定一个为正,另一个为负,其次在计算时正确选择加法法,是同号相加,取相同符号并用绝对值相加,是异号相加取绝对值较大符号,并用较大绝对值---
--减去较小绝对.解:+(-1.5)()=16.8,故选C【变式题组】01今年陕西省元月份某一天的天气报中延安市最低气温为-℃,西安市最低气温2℃这天延安市的最低气温比西安低()A8℃B.-8℃C6℃D.202南)飞机的高度为2400米,上升250米又下降了327米,这是飞机的高度__________03珠穆朗玛峰海拔8848m吐鲁海拔高度为-155m,则它们的平海拔高度__________【例2】计算(-83)+(26)+(17)+(26)+(+)【解法指导】应用加运算简化运算,-83与-相加可得整百的数,+26与-互为反数,相加为0有理数加法常见技巧有:⑴为相反数结合一起;⑵相加得整数结合一起;⑶同分母的数或容易通分的分数结合一起;⑷相同符号的数结合一起解)+(26)(17+(26)(+15)[(83)+(17)]+26+(-26]15(-)+=-85【变式题组】01+(-3)+(-)(-11402)+0.26+(-)+(-1.06)030.125+1+(-3++(-0.25)8---
===--===【例3】计算
112008【解法指导】依化简求.
11n(nn
进行裂项,然后邻项消进行解:原式=
11)))2
12=
11133200920092009【变式题组】
14
116
18
01算1(-2+3(-4+…+-100)02一个面积为1的方形等分成两个面积为的长方形,接着把面积的长方形分成两个面积为1的正
方形,再把面积为的正方形等分成两个面为的长形,8如此下去利用形揭示计11132【例4】如果a<,>0,+<0,么下列关系中正确的是()A.b>->-aB.->-bC>a>-b>aD.>>-b>【解法指导扣有数加法法则两加数及其和的符号,确定两加数的绝对值大小,然后根据相反数的关系将它们在同一数轴上表示出,即可得出结.解:∵<0,b>,∴+异号两数之和又a+<0,∴、中负数的绝值较大,∴|a>|b|将、、a、b表示在同一数轴上,如图则它们的大小关系是----
-->>>a【变式题组】001若m>0n<0且m>n则+________0.填>、<号)02若m<0n>0且m>n则+________0.填>、<号)03已知a<b>0,<0,且c>|a,试比较b、c、a、+大小【例5】(-333)-(-1.6)(-21)【解法指导】有理数法的运算步骤:⑴依有理数的减法法则,把减号变为加号并把减数变为它的相反数;⑵利用有理数的加法法则进行算解42-(33)(1.6)(8)+
-a
33++21
=4.41.6+(3+21)=6+55=【变式题组】
01
51()))))2024
-(+3.85)-(-3
)+(3.15)403178-87.21--)+19-12.79【例6】试看下面一数:25、2119…⑴观察这列---
--数,猜想第数是多少?n数是多少?⑵这列数中有多少个数是正数?第几个数开始是负数?⑶求这列数中所有正数的和【解法指导】寻找一列数的规律,应该从特殊到一般,找到前面几个数的规律通过观察推理、猜想出n个数的规律,再用其它的数来证解:⑴第10个为,第n个数为25-2(n⑵n=时,-2(13-=,=时,--=-故这列有13数为正第14个数开始就是负数⑶这列数中的正数为,其和=(251)+233+…+(15+)+=×6+13169【变式题组】01州察下列等式1=1-2=27,25
44=64依你发现的规律,解答下列题.⑴写出第5个等式第10个等式右边的分数分子与分母的和是多少?02观察下列等式的规律918,169=16,36-=用关于n≥1自然数等式表示这个规律;⑵当这等式的右边等于时求n.---
--【例7届希杯竞赛试题)++)+(1+3+3+2+3+…++…48494550【解法指导】观察式数的特点发现:若括号内在加上相同的数均可合并成我们采取将原式倒序后与原式相加,这样极大简化计算了解:设S=+1+2)++3)++(344+++)50
则有=+2+1)+(3+2+)+…++4+…++150将原式的和倒序再相得2S=1+1+++1++3+3+1)
333444+…+(1++…+++49+48+…++)50即2S=12+++…+
49(49
=∴S
【变式题组】
201计算-22-22-6-2-2+210028届望杯试题计11--…-1+2+1+…+1+----1+432+1+…+1)4演练巩固·反馈提高---
--01m是有数,则m|m|()A可能是负数B.不可能是数C.必是正数D能是正数也可能是负数02如果|,|b|2,么|a+()A5B.C.1或1或±03在,,-2这三个数中,任意两数之和的最大值是()A1B.C.-1D.-04.两个有理数的和是正数,下面说中正确的是()A两数一定都是正数B.两数都不为0C.至少有一个为数D.至少有一个为正05下列等式一定成立的是()A|x|-x=B.-x-x|x||x|=0.|x|06一天早晨的气温是-℃中午又上升了℃午间又下降了8℃,则午夜温是()A-℃B.4℃C.-3℃D.5℃07若a<,则|a--等于()A-B.C.D2a08设x不等于0
的有理数,则
|xx||
值为()xA或B.或C.或-D.0或-09)+-2)的为_________10用含绝对值的式子表示下列各式⑴若a<,>0,则b-a=b=__________⑵若>>,|ab|__________⑶若ab0,ab---
--__________11计算下列各题:⑴+(-27)95⑵-+0.2-0.60.35-0.25⑶0.5-+2.75-7
⑷33.1--22.9)--|12计算-35-7911…+-9913某检修小组乘汽车沿公路检修线,规定前进为正,后退为负天从A地出发到收工时所走路单位米)为+-+--8+13-12+7,+⑴收工时距离地多远?⑵若每千米油克,问从A地发到收工时共耗油多少千克?141997减它的1去余下去余下的1,
再减去余下……以类推直最后减去余下的1最后的得数是多少?
---
--15独特的埃及分数:埃及同中国一,也是世界著名的文明古国,古代埃及人理分数与众不同,他们一般只使用分子为的数,例如1+1来表示2,1++表示3等15
等现有90个埃及分数:
,
,
,
,…
,
,你能从3490中挑出个,加上正、负,使它们的和等于1?培优升级·奥赛检测0116
届希望杯邀请赛试题
等于()
A
B.
C.
D.
02然数abc满足
+
+
+
=则
+
b
2
2
2
3
4+1+
等于()
5
6A
B.C.
D.
03希望杯邀请赛试题)、b、、是互不相等的正整数abcd=441a++c值)A30B.32C.D047届希望杯试题)若a,=,=,则a、b、大关系是()Aab<cB.b<aCcb<aD.ac<.
11)
(1
)(1)
的值得整---
--数部分为()AB.C.3D.06(-2004+×(-2)2003的为()A-2003D.2
B.2.-207望杯邀请赛试题)若|m|=+,则(4m1)2004=__________08.1++2)(1+)+…+(1+23+59)__________
09=__________10.1+2-2-2-2-22210=__________1132001×7×132003所数的末位数字为_________12已知ab)2+|b=b+|2a-b-1|=0求ab13计算(1-1)(-(1)(-1)1-1)
14请你从下表归纳出+++43+…+3的公式并计算出1+23++43+…+100的值
12
12
24
36
4583
3
6
9154
4
85
51015---
())))⑵()))())))⑵())))第03讲有数的乘除、乘方考点·方法·破译1理解有理数的乘法则以及运算律,能运用乘法法则准确地进行有理数的乘运算,会利用运算律简化乘法运.2.掌握倒数的概念,会运用数的性质简化运.3了解有理数除法意义,掌握有理数的除法法则,熟练进行有理数的除法运.4掌握有理数乘除混合运算的顺序,以及四则混合运算的步骤,熟练进行有数的混合运.5理解有理数乘方意义,掌握有理数乘方运算的符号法则,进一步掌握有理的混合运.经典·考题·赏析【例1】计算⑴
1)4
⑵
12
⑶
1())4
⑷2500⑸13【解法指导】掌握有数乘法法则,正确运用法则,一是要体会并掌握乘法的符规律,二是细心、稳妥、层次清楚,即先确定积的符号,计算绝对值的.解:⑴
11)))284⑶
111()))42
⑷
2500⑸33【变式题组】.⑴
(
⑵
1()4
⑶(0.125)---
--⑷
(
⑸11)2.
()3.
(2)54.
1(3【例2已知两个有数ab如果ab0且a+<0,那么()Aa>b<.a,b>Ca、异号
Da异号且负数的绝对值大【解法指导依有理乘法法则异号为负故ab异号,又依加法法则,异号加取绝对值较大数的符号,可得出判断解:由ab<知ab异号,又由ab<0,可知异号两数之和为负,依加法则得负数的绝对值较大,选D.【变式题组】01若++,且<<0,则下列式中,错误的是()Aa+b>B.b<C.ab+---
⑶())))⑶())))⑶>D.+bc>02知a+b>0-<ab<则a___________0,b___________0,|a|_________|b|.03(山东烟台)如果a+<0,()
,则下列结论成立的A>>B<b<C>0b<Da<0,>04(广州)列命题正确的是()A>0a>0Bab<0,则a0,b<Cab=00或b=Dab=0,则a且=0【例3】计算⑷
⑴
⑵
)())【解法指导】进行有数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然把绝对值相乘,要注意除法与乘互为逆运.若能除,应用法则,可直接确定符号,再绝对值相.解:⑴
(78
⑵73)))7⑶151036【变式题组】
⑷
001.⑴
(
8)
⑵
1))3⑷
())802.⑴
⑵
())---
--⑶03
)513))4【例4(茂名)若实数a、b足
aa
0
,
abab
=___________.【解法指导】依绝对意义进行分类讨论,得出a、的取值范围,进一步代入论得出结.解:当>0,
ab0)
;当
ab<,
,∴ab<0从而
=-1.【变式题组】01若k是有理数,则|k|+÷k的结果是().正数0负数D非负数02若Ab都是非零有理数,那么
bb
的值是多少?03如果
,试比较
xy
与
的大小【例5知
x
2
2,y
求
的值;⑵
3
的值【解法指导】表示个a相,据乘方的符号法则,如n果a正数,正数的任何次幂都是正,如果a是负数,负数的奇次幂是负数,数的偶次幂是正.解:∵
x
2
2
,
3
⑴当
xy,xy
2008
2008
当
xy
时,
xy
2008
---
⑵当
xy
--时,x2y,x((2008y(【变式题组】01)若
mm2)
,n的值是__________.02已知x、为倒数,且绝对值相,求
(
)
y
的值,这里是整数.【例6徽)年我省为135万名农村小学生免费提供教科书,减轻农民的负担135万科学记数法表示为()A.0.135×10
B.1.35×10C.0.135×7
D1.35×【解法指导个表示为科学记数法的a×10的式,其中a整数位数是1位.故答案选B.【变式题组】01汉武汉市今年约有103000名学参加中考,103000用科学记数表示为()A.1.03×10
B.0.103×10C.×
D×1002)沈阳市计划从2008年到2012新增林地面积253万亩用科学记数法表示正确的)A.25.3×105亩B.2.5310亩C.25310亩D.2.53×10亩【例7海竞赛2k2992005000250009999005000【解法指导】找2的通项公式=(k2原式==
1k2(122(222(k50)22---
--[
2(1
9950)
2]250)2
982250)2
][=
2(492
5122
502]
=
249
2+11
【变式题组】33++=()2+4+6+2+4+6+2+4+6+2+4+6+A
B.
.
D
2希望杯试题知
111求
111201640
的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则因数的个数为()A个B.个C.个D个或个02有理数的和是负数也是负么这两个)A互为相反数B.其中绝对值大的数是正数,另一是负数C.都是负数D.其中绝对值大的数是负数,另一是正数03知abc0><0下结论正确的)A<0>Bb>c<0Cb<0<D.b>0,c>04若ab|=,则()Aab>B.ab≥0C<---
--<D.ab<005a互为反数互为倒数绝对值为2则代数m的A3B1C.±D-3或106若a>则a的取值范围()a.a10<a1a>-1D-1<<或>07已知ab为有理数,给下列条件:ab=;a-=0;ab0;④数的个数是()
,其中能判断b
互为相反A.个B.个C.个D.4个08若ab≠0,则
的取值不可能为()0.C.D-09
11
的值为()A-B(-2)21
0D-21010(安徽)2010年一季度,全国城镇新增就业人数289人,用科学记数法表289万正确的是(A.2.89×10C.×
B.2.89×10D2.89×1011已知4个不相等的整数ab、c、,它们的积abcd=,a++c=___________.12
n
2n
2n
(为自然数)=13如果
,试比较
与xy的小---
--14若a、、为理数且
bb
,求abc
的值.15均为整的.培优升级·奥赛检测
a求
01已知有理数、z
两两不相等,则
yzz
中负数的个数是()A1B.2个.3个D个或个02计
21
1,2
2
3,2
3
2
4
15,2
5
归纳各计算结果中的个位数字规律猜测
2
的个位数字是()A..7D03已知
ab2c3d45
,下列判断正确的是A.abcde<0.ab2cde<0C.abcde<0D.abcd<04若有理xy
使得
,x,xy
这四个数中的三个数等,则y||x|的值().
.0
D
3205A=
(22
4
8
1)(2
1)(2
A-的末位数字是()A..7D06如果
a)
2001
2002
,则a2003
的值是()A..0---
--D-07已知
a
55
,b33
44
,c55
33
,66
22
,则a、b、c大小关系是()Aa>b>>B.>>c.ba>>D.a>d>>08已知abc不等于0,且
abcabc
的最大值为m最小值为n则
m)
2005
=0913届华杯赛”试题)从下面每组数中各取个数将它们相乘,那么所有这样的总和是___________.第一组:
,4.25,5.75
第二组:
1
第三组:10一本书的页码从记到,把所有这些页码加起来,其中有一页码被错加了次出了不正确的和这个被加错了两次的码是多少?11北竞赛试题)观察下列规律成一列数:1,,1,1,,3,1,,4,,2,5,…245216(*)中左起第m个数记为F(m)=1时,求m值和这m数的积
---
,1,2,⑵--,1,2,⑵12中示的填魔方填了一分下列9个数1填入方格中得所有行列及对角线上2数相乘的积相等,求x的值.32
x6413(第12“华杯赛”试题)知、是正整数,并且1)(1)(1));23m111)(1)).23证明:⑴
n;A2
,求
m的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系、次数的概.2.掌握多项式及多项式的项常数项及次数等概.3.掌握整式的概念,会判断个代数式是否为整.4了解整式读、写约定俗成的一般方法,会根据给出的字母的值求多项式的.经典·考题·赏析【例1】判断下列各数式是否是单项式,如果不是请简要---
--说明理由,如果是请出它的系数与次数.【解法指导】理解项式的概念由与字母的乘积组成的代数式,单独一个数一个字母也是单项式,数字的次数为0,是常数,单项式中所有母指数和叫单项式次.解:⑴不是,因为代式中出现了加法运算;⑵不是,因为代数式是与x的商;⑶是,它的系数为π,次数为;⑷是,它的系数为
,次数为3.【变式题组】01判断下列代数式是否是单项式02说出下列单项式的系数与次数【例2】如果
与
都是关于xy的六次单项式且系数相等,求mn值【解法指导】单项的次数要弄清针对什么字母而言,是针对x或xy是有区别的,该题是对x与y而的此单项式的次指x的指数之和字母m无关此时将成一个要求的已知数.解:由题意得【变式题组】01一个含有x、y的五次单项式,数为3.且当x=2,y-这个单项式的值为,求这个单项式.---
--02(毕节)写出x、y的五次单______________________.【例3】已知多项⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数是什么?【解法指导】n单项式的和叫多项式,每单项式叫多项式的项,多项式里数最高项的次数叫多项式的次.解⑴这个多项式是次四项式(2)最高次项是,二项系数为-常数项是1.【变式题组】01指出下列多项式的项和次数⑴
(2)02指出下列多项式的二次项、二次系数和常数项⑴【例4】多项式
(2)是关于的次三项式,并且一次项数为-7.求-k值【解法指导】多项式次数是单项式中次数最高的次数,单项式的系数是数字与母乘积中的数字因.解:因为
是关于x的三次三项式依三次知m3一次项系数-即3n+1=-7,故n2.已有三次项为,一项为7x,数项为5,又多项式为三三项式,故二次项的系数k,故-k=3+2-0=【变式题组】01多项式
是四次三项式,则m---
--的值为()AB.-2C.±2D.±102知于x的项式不含二次项,求5a-8b的值03已知多项式单项式值
是六次四项式,的次数与这个多项式次数相同,求n的【例5】已知代数
的值是的.【解法指导】由,阶段还不能求出x的具体值,所以联想整体代入.解:由得由(【变式题组】01(贵州)果代数式-2a+3b+8的值为18,那么代数式9b6a+2的值等于()A28B.-28C.32D.-02同山,则的值为_______________.03)代数式值为______________.【例6】证明代数的值与的取值无.
的值为9,
的【解法指导代数的值与m的取值无关需证明代---
--式的化简结果不出现母即可证明:式=∴无论的值为何原式值都为原式的值与取值无.【变式题组】01.知的值与无关,求的值02若代数式值与字母的取值无关,求a值
,且的【例7市选赛)同时都含有abc,且系数为1的七次单项式共有(AB.C.D25【解法指导】首先出符合题意的单项式,x、、都是正整数,再依x+y+z=来确定x、、的值解:为所求的项式,则x、、都是正整数,且x+y+z=7.当x=时,y=1,2,3,4,5,z5,4,3,2,1.=时,1,2,3,4,z=4,3,2,1.当x=时y1,2,3,z=3,2,1.x=时,1,2,z=当x=时,=z=1.以所求的单项式的个数为5+4+3+2+1=,故选C.【变式题组】01已m、n是然,是八次三项式,求值02整数n___________,多项
是---
--三次三项式演练巩固·反馈提高01下列说法正确的是()A.是单项式B.
的次数为5C.单式
系数为0D.是四次二式02a表示一两位数b表示一个一数,如果把放在a的右边组成一个三数.这个三位数是()A.100b+aB10a+bCa+bD.03.若多项式的值为,多项式的值是()AB.C.-D.704随着计算机技术的迅猛发展,电价格不断降低,某品牌电脑原售价为n元,降低m元后,又降低20%那么该电脑的现售价为)A元D.05若多项式
元B.元
元C.是关于的一次多项式,则的值是)AB.1C.或1D.不能确定06若(是关于xy五次单项式则它的系数是____________.07电影院里第1排有a个座位,面每排都比前排多3个座位,则第10排有_____个位.08,则数式xy+mn值为_______.09工作单独做需天成独做需b天完成如果甲、乙合做7天完工作---
--量____________..()有一串单项式(1)请你写出第个单项式;⑵请你写出个单项式.11)一个含有x、的五次单项式,的数为3,且当x=-时个单项式值为32这个单项式12)已知x=时多项式则当x=-时个多项式的值为多少?
的值为-,13关于xy的多项式
与多项式相同,求a-的值
的系数相同最次项的系数也14某地电话拨号入网有两种方式,户可任取其.A计时制0.05元/分B:包月制50/(只限一部宅电上网.此外,每种上方式都得加收通行费0.02元/分⑴某---
--用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;若某用户估计个月内上网时间为20小,你认为采用哪种方更合.培优升级·奥赛检测01有一列数、、,从第个数开始每一个数都等于1与前面那个数的倒数的差.,为()A.2007B2CD-02一附高招生)设记*表求a、算术均数的运算,即成立的是()①③
,则下列等式中对于意实数a、、都②④A①②③B①②④C①④D②④03已知,那么在数式中对任意的ab对应的代数式的值大的是()AB.C.D04在一个地球仪的赤道上用铁丝箍径增大1米需增加m米的铁丝,假设地球的赤道上一铁丝箍,同样半径增大米,需加n米的铁丝,则m与大小关系().>nmnC.=n---
--D不能确定05则_____________.06某书店出售图书的同时,推出一租书业务,每租看一本书,租期不超过天,每天租金元租期超过天,从第4天开始每天另加收,如果租看1本7天还,那么租金为____________元07.已知则=_____________.08.有理数ab、c在数轴上的位置如图示,化简后的结果是______________.09已知则=______________.10初中数学竞赛)设ab、的平均数为M,a、的平均数为N,又Nc平均数为P若b>c则M与P大小关系_____________.11(资阳)图,对面积为1的ABC逐次进行以下操作:第一次操作,分别延AB,,CA至点A,,C,11使得AB=BC2BC,A=2CA顺次连接A,1B,,得△ABC,记其面积为S;二次操作,分111别延长AB,C,A至点A,C,得AB1112=BC=2BCA=A次接A,121111C,得到△AB,其面积为S;;按此规律继续下2去,可得到eq\o\ac(△,2)BC,则面积S=512)探索n×n正方形钉子上n是每边上的钉子数接任意两钉子所得到的不同长度值的线段种数:当n=2时钉子板上所连不同线段长度值只有1与2,---
PB--PB所以不同长度值的线只有种用S表示不同长度值的线段种数,S=n=时钉子板上所连不同线段的长度值只有,2,52五种,比=时增加3种,即S2+3=5.1.察图形,填写下表:n=2n=3n=4n2.出n-1)×(n1)和n×n的
钉子数(n×n)2×23×34×45×5
S22+323()()两个钉子板上不同度值的线段种数之间的关系(用式子或语言表述均可3.×的子板,写出用n表示S代数式13岛提出问题:如图①,在四形ABCD,是AD上任意一点,△PBC与△ABC和△的面之间有什么关系?
探究发现:为了解决个问题,我们可以先从一些简单的、图①特殊的情形入手:⑴当=1AD时(图②2∵=1AD,和△ABD的高相等,2
C∴
=ABP2
S
.
---
图②
和a2a和a2a∵PD=ADAP2
--AD△CDP和CDA的相等,∴
=2
S
.∴
PBC
=
-
ABP
-
=
-2S
-2
S
=
-12
(S
-)2
(S
-S)=1S+S.2⑵当APAD时,探求S的关系,写出求解过;
PBC
与S
和S
之间⑶当=1AD时PBC6式为:;
与S
和S
之间的关系⑷一般地AP=1(n表示正整数探求Sn与S和之间的关系写出求解过程;
PBC问题解决AP=m(0m≤1n和S之间的关系为:___________.
PBC
与S
第05讲整式的加减考点·方法·破译1.掌握同类项的概念,会熟地进行合并同类项的运.2.掌握去括号的法则,能熟地进行加减法的运.3通过去括号,合同类项和整式加减的学习,体验如何认识和抓住事物的本特征经典·考题·赏析【例1南)如的值分别是()
a33
y
b
是同类项,那么
a、bA
b2
B.
ab2
C.Dbb---
--【解法指导】同类项系数的大小无关,与字母的排列顺序也无关,只与是否含同字母,且相同字母的指数是否相同有.解:由题意得【变式题组】
2
,∴
b201.(天津)已知a=2,b=3,则()Ay与b3n是同类项By3与bxy是同类项C.Bx2a+14与axy1是同项.5mn与6nm是同类项.若单项式2Xy与-xy是类,则m=3___________,___________.03指出下列哪些是同类项⑴b与-ab2
⑵与3yx(3)m-与5(-m⑷5ab与6ab【例2多项式合同类项后是三次二项式则应满足的条件是__________.【解法指导】合并同项时,把同类项的系数相加,所得的结果作为系数,字母字母的指数不.解:因为化简后为三二项式,而5x3+已为三次二项式,故二次项系为0,即--2=0,∴m=-【变式题组】01.计算:-(2x2--1)-2(x2-3x+5)+4x+02州2x-2y033山mn(m+n)【例3州)求式3x2-+2与2x2+x-3的差---
3--3【解法指导】在求两多项式的差时,应先将这两个多项式分别用括号括起来,去括号,而去括号可以用口诀:去括号,看符号,是“+号,不变号,是“-”号,全变号,去了括号后,有同类再合并同类项.解22x2+-3)3x2-2-2x-+3=x6x5【变式题组】01一个多项式加上-2xy得2-3xy+y2,则这个多项式是__________.02-3x等于6x-的代数式是__________.【例4】当a=,=14+2(3a+2b)的值
时,求(+2-3(3a+2b)【解法指导】将2a+23a+2b)别视为一个整体,因此可以先合并“同项”再代入求值,对于多项式求值问题,通常先化简再求.解:(2--3(2a+b)2+2(3a+2b)=-3)(2a2+-3)(3a+=+b)2-(3a+2b)∵=,=∴原式=4【变式题组】
13401苏南京)先化简再求值+1)2-++其中2.02.已知abc14,b2-6,求3a+2-.【例5】证明四位数四个数字之和能被9整除因此四位数也能被9除【解法指导】可用代式表示四位数与其四个数之和的差,然后证这个差能被9整除---
--证明:设此四位数为1000a+10c+d,则100bd-(ac999a++9c=9(111a++c)∵111a+11b+整数,1000a100b+d=9(111a+++(++d)∵+11b+与++d)均被9整除∴+++也能被整除【变式题组】01已知ab<c,且xyz,下列式子中值最大的能是()Aax+byczB.ax+bz+azD.bx+aycz02位数减去此三位数的三个数之和必为9的倍【例6】将x-+1)展开后得ax+x11+…+12a2ax+a,求a+++…++a+a的.21082【解法指导】要求系之和,但原式展开含有x项,何消去项,可采用赋特殊值法解:令=得aa……+a+=12令x=-得a-a+-……-aa12110两式相加得2(a++……+a+)=7301282∴++a……++=1210【变式题组】已知(1)5ax5axax3axaxa(1)541当=时,有结论;(2)当=1时,有何结论(3)当x=-时,有何结论;(4)求a++值53---
02.已知ax+bx3+2+(x-++e.(2)试求+值
(1)a+b+【例7(望杯培训)已知关于x的次多项式a(xx2+3x)+2x)+x-当x=2时的值-求当=-,该多项式的值【解法指导】设法求a值,解题的突破口是根据多项式降幂排列,多项的次数等概念,挖掘隐含a、的等式解:原式=ax-ax2+3ax2+bx+35=+1)x3+(2b-2+(3a+-∵原式中的多项式是于x二次多项式∴∴=-又当x=2时,原式的值-17.
∴(2b+2
=-17,∴b=-∴原式=-24x-5∴当x=-=2)2-4-2)-=-【变式题组】01京迎春杯)当=-时,代式ax-+1=-17.则=-时,12ax-3bx35___________.02林赛题知y=ax7+5+cx+dx+e,其中ab、c、d、e为常数,当x=2,y=2,x=-2,y=-则e为)A-B.6C.-12D12---
--演练巩固·反馈提高01州若-3x2y3与2xyn是同类项,则的值()ABC.D.-102.一个单项式减去x2-y等于x+y2,则这个单项式是()A2x
B.2y2C-D.-2y203若和N都关于的二次三项式,则N定是()A二次三项式B.一次多项式C.三项式D.次数不高于的整式04当x=时,多项ax5+3+-10值为7.当x=-时,这个多项式的值是()A-B.-27C-.05知多项式A=2+2y2-2,B=4x+3y2+,且A+=则多项式c()A5x--z3x2y23z23x5y-2D.5y+206已知y,则3等于()D.
B1.207某人上山的速度为a千米/,后又沿原路下山,下山速度为千/时那么这个人上山和下山的平均速是()A千米时D.2ab千米/时
B.ab千/C.千/08使ax2+y2-(-ax2+bxy2y)6x29xy+成的b、分别是()A3,7,1B-3-7-1C-7,---
---1D-3,7,-109=___________多项式3x2-2kxy14中不含xy项.10(宿迁)若2a-=2,则68a-=___________11某工程独做需m天完成合作需n天完成,那么乙独做需要______天完成.12=--y-则2x-___________13设a表示一个两位数,b表示一三位数,现在把a放b的左边组成一个五数,设为x,再把b放a的左边,组成一个五位数,设y,试问x-y被9整除吗?请明理.14.若代数式x2+ax-+7)(bx-2x9y-1)的值与字母x取值无关求a、的.15设=x2-y,B=-+xy-y2,B=-2x2+xy-,当x<y<时,比较AB的值的小培优升级·奥赛检测01是一个三位数是一位数把b于a的右边,则所得的四位数是(AabB.bC1000baD+02一个两位数的个位数字和十位数交换位置后所的---
a--a数比原来的数大,这样的两位数中,质数有()A个B.个C个.个03数x,x,x;y,y,y;z,z,z,它们的平数分别是12a、b、c,那么x+y-z,x+y-,x+z的平1均数是()A
B.
a-c
C.b-.3(a3+-04如果对于某一特定范围内x的何允许值P=
x
+x
+……+
1-x+1-10
的值恒为一常数,则值为()A.B.3C.D05竞已知a+b=0,a≠0,则化简()A2aB.C.D.-
b(a(bab
得06如果个同学在b小内共搬运c块砖那个学以同样速度搬a砖,需的小时数()A
c
B.
c
C.
D
a2aab2c07如果单项式3x+yb2与5x3y+2的为8xya2,那么b
=_________.086届“希望杯”邀请赛试题如果22x=则x4+38x-13x15_________09将1,2,3……100个然数,任意分为,每组两个数现将每的两个数中任一数值记作a,另一个记作b,代入代数式1()中进行计算,求出其果,50组代入后可求的50值,则这50个和的最大值时________.10两个多项式A和B=nx+-3+-3,B=n-4+3+nx2-2x-1,试判断是否存在整数n,使---
baccabcbaabc--baccabcbaabcA-为五次项式.11设xyz都是整数,且11整除7x+2y-5z.求证:整除7y12z.12.(美国奥林匹克竞赛题)一次游戏中,魔术师请一个而你随意想一个三位(a、b、依次是这个数的百位、十位、个位数字)并这个人算出5个数,,,与的和N,把N告魔术师,于是魔术师就可以说出这个人所想的数在N=3194你当魔术师出来
13原市竞赛题)将一个三位数的间数去掉,成为一个两位ac满=9ac+4如155=+4试求出所有这样的三数第06一元一次方程概念等式性质考点·方法·破译---
--1.了解一元一次方程、等式概念,能准确进行辨析.2.掌握一元一次方程的解、式的性质并会运用.经典·考题·赏析【例1】下面式子方程的是()A.x+Bx+<3C.2x+=D3=2+【解法指导】判断式是方程,首先要含有等号,然后看它是否含有未知数同时具有这两个条件的就是方程2x+=是一个解的方程,但它是方程,故选C【变式题组】01①+3y-1+515-x=x+1,④+=3中方程的个数是()
A个B个C.D.4个02徽肥)在甲处工作的有人,在乙处工作的有196
人,如果要使乙处工的人数是甲处工作人数的,应从乙处调多少人到甲?若设应从乙处调多少人到甲处,则下列方程正确的是()A+=
(196-x)B.
(272=–
C.1272+x=196-x.x)=196-x
(272+03根据下列条件列出方程:⑴与的的倍是14⑵的倍与的差是5⑶
的1与的差倍等于1【例2】下列方程是元一次方程的()---
--x3==4.1D
【解法指导】判断一方程是一元一次方程,要满足两个条件:①只含有一个未数;②未知数的次数都是1,只这样的方程才是一元一方程.故选择D.【变式题组】01以下式子:①+=;②5x+=③xy④2;3x=⑥
=;⑦ab)ac+;⑧+b其中等式有_个;一元次方程有__________个.02课改实验区)若2
=一元一次方程,则的值为)AB-2C.2D.403)下列式子是方程的()A.×=18B8.5y+6D.÷=1【例若x=是方程-kx+x+5=的解则的值是()AB.3C.D.83【解法指导】方程解是使方程左右两边相等的未知数的值,所以-++50,k=【变式题组】
故选择.01)x=是下列哪个方程的解)A3x=-1B3x-+2=C3x-1=D3x2x-202)方程3x+=的解的相反数是)AB.-2C.3D.3---
--03)如果=()
是方程
的根,那么a
的值是AB.2C.-D.-604州)根据下列问题,设未知数列出方程,然后估算方程的解:(1)某的3比这个数大4(2)小明年龄3倍比他的爸爸的年龄多岁,小明爸40岁问小明几岁?(3)一个商店今年8月份出A型电300台,比去年同期增加50%问去年8份出型机多少台?【例4)c
为任意有理数,对于式a=2×0.25a进入下面的变形,其果仍然是等式的()A.两边都减去-3cB.两边都乘2cD.左边乘以右边上c
C.两边都除以【解法指导】等式的质有两条:①等式两边都加(或减)同一个或式子果相等等两边都乘同一个数,或除以同一个不为0的数结果仍相等,故选择A.【变式题组】01岛如果ma=mb,那么下列等式不一定成立的是)Ama1=mb+B=mb−C.
mambD=02)由等式3a−5=+b得到a=11的变形()A等式两边都除以3B.等式边都加上---
2212x2212x(2a-5)C等式两边都加上5D.式两边都减去(2a-5)03)下列变形符合等式性质的()A如果2x−7那么2x=7−如3x−=+1,那3x−=−2C.如果-2x=,那么x=-5+D.如果1x=,么x=-3【例】利等式的性质解下列方:
⑴x719⑵5x30⑶-x=
⑴解:两边都减去7得x+7=19并同类得=⑵解:两边都乘以
得x=-6⑶解:两边都加上类项得1x=9
得x−55=+5
合并同两边都乘以-3x=-【解法指导】要使程x+19转化为x=(数)的形式,要去掉方程边的7,因此要减,类似考虑另两个方程如何转化为x=的形式.【变式题组】01冈)某人在同一路段上走完一的路程,去的速度,回来的度v,则他的平均速度()12AB.2vvC.vDvv2vv2102州)已是方程2x−ay=的一个,那么y的值是)---
--A1B3C3D.-103)下列变形正确的()A.由x+3=得x7B.由a+b0,得a=C.由5x=4x-得x=2D.由x=,得x04)解方程
x
().同以D同除以
B.同除以3.同乘以-322【例6】根据所给的条件列出方程:小华在银行存了一笔钱,月利率为2%利息税为5个月后,他一共取出了本息1080元存人的本金是少元列方程)【解法指导】生活常碰见的储蓄问题是中考中常见的一种题型,应正确理解息税的含义,清楚本息和:本金+利(除税后是解题关键题中的利息税是把利息的20%扣除作为税上交国家解:设他存入的本金x元,个月的息是2%5x=0.1x,需交利息税0.1x×=0.02x元,根据题意得:+0.1x0.02x=1080.【变式题组】01)商场在促销活动中,将标为200元的商品,在打八折的基础上,打八折销售,则该商品现在售价是)A160B128元C120元D.8元02)根据下列条件,列出方程解之:数的倍减去等该数的6加上求某数(2)长方形的周长是50米,长宽之比为3∶求长方形面积,---
--【例7杯”请赛试题)已知p、q都是质数,并且x未知数的一元一次方程px+5q=97的解1代数式40p+101q的值.【解法指导】用代入可得到、q关系式,再综合运用整数知识:偶数+奇=奇数、奇数+奇数=偶数、偶数+偶数=偶数.解=代入程px+5q=p+5q97,故与5q中必有一个数是偶数:(1)若p=2,则Sq=95,q=,40p+l01q+4=×+×+=2003;(2)若5q为偶数,则q=2,=87,但87不是数,与题设矛盾,舍去.∴40p+l01q+的值为2003.【变式题组】01省竞赛题知x=3x+64x+48x+9)=_______.0218“希望杯赛题对任意四个有理数ab定义新运算
a
=ad−bc知
2
=18,c
x则x=()A.1B.2C3D.4演练巩固反馈提高01下面四个式子是方程的是()A3+=5B.=2C2x−5Da+≠02下列方程是一元一次方程的()A−2x3=0B2x−=C−−1=2D.
---
7x.7x.7=−x.03的半比省的相反数大用方程表达句话的意思是).
1x2
7xD1=x+04庄把1200g衣粉分别装入5个大小同的瓶子中,除一瓶还15g外,其余四瓶都满了,问装满的每个瓶子中有洗衣粉多克?若设装满的每个瓶子有xg洗衣粉,列方程为)A5x+15=1200B5x-15=C4x+=1200D.4(x+15)=05在方程3x−=7;②x=3;③5x−=;④(x+)(2x+1)中为x=的程是().①②B①③C.②④D③④06如果方程2n+=−的是n=-4,那么的值是()AB.5C-D-1307若”是新规定的某种运算符,aeq\o\ac(△,b)eq\o\ac(△,)=a2+则(-)△=10中x()A-B.C.D.-808分钟跑am分钟可以跑完3000m,如果每分钟多跑l0m,则可以提前1分完3000m下列等式不正确的是()10)(b1)abal)=3000C.3000=a+D3000=b1a09知关于x的方程(m2)x+=-是一元一次方程,则x=_______.---
--10在数值-4,-中是方程4x2=10+的解是______.11州)已知的大小.
−1=n,试用等式的性质比较m12.(宁)已知方程a−=4的解为4,求式子a−a2a的值.13三个连续自然数的和是,求这三个数.14某班有人,其中会游泳的有52人,会滑冰的有33人,这两项都不会的人这两项都会的有多少人?15甲车队有司机80人,车队有人,使两个车队的司机人数一样多,该从甲车队调多少个司机到乙车队?培优升级奥赛检01下列判断中正确的是)A方程=1与方程x(2x-3)=同解,B程2x-3=与方x(2x-3)=没相同的解.C.方程-=x的是方程2x-=的解.---
x--xD.方程2x=解是方程x解.02方程xxx2009的解()2A2008B.2009.2010D201103赛题a是任意有理数面各题中(1)方程ax=的解是=(2)方程=a的解是=(3)方程ax=1的解是x=(4)的是=±结论正确的的个数是()01C.D304”邀请赛)已知关x的一元一次方程(3a++7=无解,则ab是)A正数B.非正数C负数D非负数05一届“希望杯”邀请赛试题已知a是不为的整数关于方程ax2a3−−5a+4有整数解,则a值共有)A个B个C.D.9个06杯”邀请赛)方程+x)=的的个数为)A不确定B.无数个.2个D.个07若x=是方程=时,则方程
xx
的解,则a______;又若当a的解是_____.08程
y25
的解是____的5是____.09迎春杯赛试题知那么x=____
3990x1995
=,10”邀请赛试题)已知3x27的值____.
x
,那么99+11竞赛)解关于
的方程
xxb
=----
--3.12a
为何值,方程
32
有无数个解.13赛题若干本书分小朋友每,则余;每人9本,则后一人只得本,问朋友共有几人?有多少本书14竞赛题队原有人出16到乙队,调出人数后,甲队人是乙队人数的(不等于1的整数)倍还多人,问乙队原有多少人第07讲一元一次方程解考点·方法·破译1.熟练掌握一元一次方程的法步骤,并会灵活运用.2.会用一元一次方程解决实问题经典·考题·
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 半年工作总结模板
- DB2201T 62-2024 肉牛运输应激综合征防治技术规范
- 职业导论-房地产经纪人《职业导论》押题密卷1
- 房地产经纪操作实务-《房地产经纪操作实务》押题密卷1
- 人资年度工作总结模板
- 农学硕士答辩指南模板
- 年度目标达成总结模板
- 人教版四年级数学上册寒假作业(六)(含答案)
- 河南省郑州市2024-2025学年高二上学期期末考试 生物(含答案)
- 二零二五年食堂厨具定制设计与安装合同2篇
- 提优精练08-2023-2024学年九年级英语上学期完形填空与阅读理解提优精练(原卷版)
- DB4511T 0002-2023 瓶装液化石油气充装、配送安全管理规范
- 企业内部客供物料管理办法
- 妇科临床葡萄胎课件
- 三基三严练习题库与答案
- 传媒行业突发事件应急预案
- 债务抵租金协议书范文范本
- 山东省潍坊市2023-2024学年高二下学期期末考试 历史 含解析
- 中医诊疗规范
- 第14课《叶圣陶先生二三事》导学案 统编版语文七年级下册
- 北师大版八年级上册数学期中综合测试卷(含答案解析)
评论
0/150
提交评论