




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年河南省鹤壁市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.已知全集U=R,集合A={x|x>2},则CuA=()A.{x|x≤1}B.{x|x<1}C.{x|x<2}D.{x|x≤2}
2.下列结论中,正确的是A.{0}是空集
B.C.D.
3.A.10B.5C.2D.12
4.已知向量a=(1,2),b=(3,1),则b-a=()A.(-2,1)B.(2,-1)C.(2,0)D.(4,3)
5.A.负数B.正数C.非负数D.非正数
6.函数f(x)=x2+2x-5,则f(x-1)等于()A.x2-2x-6
B.x2-2x-5
C.x2-6
D.x2-5
7.已知过点A(0,-1),点B在直线x-y+1=0上,直线AB的垂直平分线x+2y-3=0,则点B的坐标是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)
8.函数和在同一直角坐标系内的图像可以是()A.
B.
C.
D.
9.下列各组数中,表示同一函数的是()A.
B.
C.
D.
10.函数y=1/2x2-lnx的单调递减区间为().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)
11.设集合,则A与B的关系是()A.
B.
C.
D.
12.两个三角形全等是两个三角形面积相等的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件
13.直线以互相平行的一个充分条件为()A.以都平行于同一个平面
B.与同一平面所成角相等
C.平行于所在平面
D.都垂直于同一平面
14.设x∈R,则“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
15.设sinθ+cosθ,则sin2θ=()A.-8/9B.-1/9C.1/9D.7/9
16.下列函数是奇函数的是A.y=x+3
B.C.D.
17.设则f(f(-2))=()A.-1B.1/4C.1/2D.3/2
18.点A(a,5)到直线如4x-3y=3的距离不小于6时,则a的取值为()A.(-3,2)B.(-3,12)C.(-,-3][12,+)D.(-,-3)(12,+)
19.若f(x)=1/log1/2(2x+1),则f(x)的定义域为()A.(-1/2,0)B.(-1/2,+∞)C.(-1/2,0)∪(0,+∞)D.(-1/2,2)
20.已知向量a(3,-1),b(1,-2),则他们的夹角是()A.
B.
C.
D.
二、填空题(10题)21.已知点A(5,-3)B(1,5),则点P的坐标是_____.
22.
23.五位同学站成一排,其中甲既不站在排头也不站在排尾的排法有_____种.
24.若log2x=1,则x=_____.
25.在△ABC中,C=60°,AB=,BC=,那么A=____.
26.口袋装有大小相同的8个白球,4个红球,从中任意摸出2个,则两球颜色相同的概率是_____.
27.设平面向量a=(2,sinα),b=(cosα,1/6),且a//b,则sin2α的值是_____.
28.不等式(x-4)(x+5)>0的解集是
。
29.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.
30.函数y=3sin(2x+1)的最小正周期为
。
三、计算题(10题)31.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
32.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
33.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
34.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
35.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
36.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
37.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
38.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
39.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
40.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
四、简答题(10题)41.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长
42.解关于x的不等式
43.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
44.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由
45.已知的值
46.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC
47.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值
48.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.
49.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。
50.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。
五、解答题(10题)51.设椭圆x2/a2+y2/b2的方程为点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|直线OM的斜率为.(1)求E的离心率e(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MN丄AB
52.如图,在四棱锥P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求证:PA⊥CD;(2)求异面直线PA与BC所成角的大小.
53.如图,一辆汽车在一条水平的公路上向正西行驶,在A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD。
54.
55.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样
56.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
57.
58.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC,SC的中点,求证:(1)直线EG//平面BDD1B1;(2)平面EFG//平面BDD1B1
59.
60.已知函数f(x)=2sin(x-π/3).(1)写出函数f(x)的周期;(2)将函数f(x)图象上所有的点向左平移π/3个单位,得到函数g(x)的图象,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.
六、单选题(0题)61.已知角α的终边经过点P(2,-1),则(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3
参考答案
1.D补集的计算.由A={x|x>2},全集U=R,则CuA={x|x≤2}
2.B
3.A
4.B平面向量的线性运算.由于a=(1,2),b=(3,1),于是b-a=(3,1)-(1,2)=(2,-1)
5.C
6.Cf(x-1)=(x-1)2+2(x-1)-5=x2-2x+1+2x-2-5=x2-6,故选C。
7.B由于B在直线x-y+1=0上,所以可以设B的坐标为(x,x+1),AB的斜率为,垂直平分线的斜率为,所以有,因此点B的坐标为(2,3)。
8.D
9.B
10.B函数的单调性.∵y=1/2x2-Inx,∴y=x-1/x,由:y'<0,解得-1≤x≤1,又x>0,∴0<x≤1.
11.A
12.A两个三角形全等则面积相等,但是两个三角形面积相等不能得到二者全等,所以是充分不必要条件。
13.D根据直线与平面垂直的性质定理,D正确。
14.C充分条件,必要条件,充要条件的判断.由x>1知,x3>1;由x3>1可推出x>1.
15.A三角函数的计算.因为sinθ+cosθ=1/3,(sinθ+cosθ)2=1/9=1+sin2θ所以sin2θ=-8/9
16.C
17.C函数的计算.f(-2)=2-2=1/4>0,则f(f(-2))=f(1/4)=1-=1-1/2=1/2
18.C
19.C函数的定义域.㏒1/2(2x+l)≠0,所以2x+l>0,2x+l≠1.所以x∈(-1/2,0)∪(0,+∞).
20.B因为,所以,,因此,由于两向量夹角范围为[0,π],所以夹角为π/4。
21.(2,3),设P(x,y),AP=(x-5,y+3),AB=(-4,8),所以x-5=(-4)*(3/4)=-3;得x=2;y+3=8*(3/4)=6;得y=3;所以P(2,3).
22.π/3
23.72,
24.2.指数式与对数式的转化及其计算.指数式转化为对数式x=2.
25.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由题知BC<AB,得A<C,所以A=45°.
26.
27.2/3平面向量的线性运算,三角函数恒等变换.因为a//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.
28.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。
29.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.
30.
31.
32.
33.
34.
35.
36.
37.
38.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
39.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
40.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
41.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则
42.
43.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
44.(1)(2)∴又∴函数是偶函数
45.
∴∴则
46.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC
47.
48.∵(1)这条弦与抛物线两交点
∴
49.
50.
∵μ//v∴(2x+1.4)=(2-x,3)得
51.
52.(1)如图,已知底面ABCD是正方形,∴CD⊥AD.∵PD⊥平面ABCD,又CD包含于平面ABCD,∴PD⊥CD.∵PD∩AD=D,∴CD⊥平面PAD,又PA包含于平面PAD,∴PA⊥CD.(2)解∵BC//AD,∴∠PAD即为异面直线PA与BC所成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国油漆台板数据监测研究报告
- 山西省临汾市部分学校2024-2025学年高二下学期第一次月考英语试题(解析版)
- 二年级数学100以内加减法竖式计算题水平自测口算题带答案
- 导管滑脱事件应急处理流程
- 高三数学实验教学计划
- 科技创新培训心得体会
- 青少年领导力与演讲能力训练计划
- 农田疫情防控应急小组职责
- 财税法考试试题及答案
- 不锈钢水箱安装流程与验收标准
- 2025届福建省多地市联考高三下学期二模物理试题(原卷版+解析版)
- 2025年传染病护理
- 2025年上半年池州市园林局招考专业技术人员易考易错模拟试题(共500题)试卷后附参考答案
- 武汉市2025届高中毕业生四月调研考试 试卷与解析
- 第18课《井冈翠竹》 课件
- 质量信誉考核自评报告3篇
- 药物服用指导与患者教育试题及答案
- (四调)武汉市2025届高中毕业生四月调研考试 英语试卷
- 特种设备事故压力容器应急预案演练记录
- 铁道概论道岔的结构课件
- 2025-2030中国硫代硫酸铵行业市场现状供需分析及投资评估规划分析研究报告
评论
0/150
提交评论