版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年广东省广州市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.A.(1,2)B.(3,4)C.(0,1)D.(5,6)
2.从1,2,3,4,5这5个数中,任取四个上数组成没有重复数字的四个数,其中5的倍数的概率是()A.
B.
C.
D.
3.若函数f(x)=kx+b,在R上是增函数,则()A.k>0B.k<0C.b<0D.b>0
4.函数A.1B.2C.3D.4
5.cos240°=()A.1/2
B.-1/2
C./2
D.-/2
6.tan960°的值是()A.
B.
C.
D.
7.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.f(x)是偶函数,则f(-x)是偶函数
B.若f(x)不是奇函数,则f(-x)不是奇函数
C.若f(-x)是奇函数,则f(x)是奇函数
D.若f(-x)不是奇函数,则f(x)不是奇函数
8.的展开式中,常数项是()A.6B.-6C.4D.-4
9.计算sin75°cos15°-cos75°sin15°的值等于()A.0
B.1/2
C.
D.
10.A.0
B.C.1
D.-1
11.{已知集合A={-1,0,1},B={x|-1≤x<1}则A∩B=()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}
12.A.B.C.D.
13.某商品降价10%,欲恢复原价,则应提升()A.10%
B.20%
C.
D.
14.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1/x2
B.f(x)=x2+1
C.f(x)=x3
D.f(x)-2-x
15.下列四组函数中表示同一函数的是()A.y=x与y=
B.y=2lnx与y=lnx2
C.y=sinx与y=cos()
D.y=cos(2π-x)与y=sin(π-x)
16.一条线段AB是它在平面a上的射景的倍,则B与平面a所成角为()A.30°B.45°C.60°D.不能确定
17.从200个零件中抽测了其中40个零件的长度,下列说法正确的是()A.总体是200个零件B.个体是每一个零件C.样本是40个零件D.总体是200个零件的长度
18.设函数f(x)=x2+1,则f(x)是()
A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数
19.函数f(x)=log2(3x-1)的定义域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)
20.已知双曲线x2/a2-y2/b2=1的实轴长为2,离心率为2,则双曲线C的焦点坐标是()A.(±1,0)B.(±2,0)C.(0,±2)D.(±1,0)
二、填空题(10题)21.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.
22.
23.在△ABC中,C=60°,AB=,BC=,那么A=____.
24.若l与直线2x-3y+12=0的夹角45°,则l的斜线率为_____.
25.设等差数列{an}的前n项和为Sn,若S8=32,则a2+2a5十a6=_______.
26.
27.如图是一个算法流程图,则输出S的值是____.
28.若函数_____.
29.
30.
三、计算题(10题)31.解不等式4<|1-3x|<7
32.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
33.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
34.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
35.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
36.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
37.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
38.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
39.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
40.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
四、简答题(10题)41.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.
42.由三个正数组成的等比数列,他们的倒数和是,求这三个数
43.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
44.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn
45.已知函数:,求x的取值范围。
46.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.
47.证明:函数是奇函数
48.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。
49.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。
50.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积
五、解答题(10题)51.2017年,某厂计划生产25吨至45吨的某种产品,已知生产该产品的总成本y(万元)与总产量x(吨)之间的关系可表示为y=x2/10-2x+90.(1)求该产品每吨的最低生产成本;(2)若该产品每吨的出厂价为6万元,求该厂2017年获得利润的最大值.
52.如图,在正方体ABCD-A1B1C1D1中,E,F分别为DD1,CC1的中点.求证:(1)AC⊥BD1;(2)AE//平面BFD1.
53.
54.如图,在四棱锥P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求证:PA⊥CD;(2)求异面直线PA与BC所成角的大小.
55.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.
56.已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.(1)求通项公式an;(2)设bn=2an求数列{bn}的前n项和Sn.
57.已知等差数列{an}的前72项和为Sn,a5=8,S3=6.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=72,求k的值.
58.
59.等差数列{an}中,a7=4,a19=2a9.(1)求{an}的通项公式;(2)设bn=1/nan求数列{bn}的前n项和Sn.
60.
六、单选题(0题)61.A.7B.8C.6D.5
参考答案
1.A
2.A
3.A
4.B
5.B诱导公式的运用.cos240°=cos(60°+180°)=-cos60°=-1/2
6.Atan960°=tan(900°+60°)=tan(5*180°+60°)=tan60°=
7.B四种命题的定义.否命题是既否定题设又否定结论.
8.A
9.D三角函数的两角和差公式sin75°cosl5°-cos75°sinl5°=sin(75°-15°)=sin60°=
10.D
11.B集合的运算.A中的元素-1,0在B中,1不在B中,所以A∩B={-1,0}.
12.A
13.C
14.A函数的奇偶性,单调性.因为:y=x2在(-∞,0)上是单调递减的,故y=1/x2在(-∞,0)上是单调递增的,又y=1/x2为偶函数,故A对;y=x2+1在(-∞,0)上是单调递减的,故B错;y=x3为奇函数,故C错;y=2-x为非奇非偶函数,故D错.
15.Ccos(3π/2+x)=cos(π/2-x)=sinx,所以选项C表示同一函数。
16.B根据线面角的定义,可得AB与平面a所成角的正切值为1,所以所成角为45°。
17.D总体,样本,个体,容量的概念.总体是200个零件的长度,个体是每一零件的长度,样本是40个零件的长度,样本容量是40.
18.B由题可知,f(x)=f(-x),所以函数是偶函数。
19.A函数的定义.由3x-1>0,得3x>1,即3x>30,∴x>0.
20.B双曲线的定义.∵2a=2,∴a=1,又c/a=2,∴.c=2,∴双曲线C的焦点坐标是(±2,0).
21.-2函数值的计算.由函数f(x)=ax3-2x过点(-1,4),得4=a(-1)3-2×(-1),解得a=-2.
22.
23.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由题知BC<AB,得A<C,所以A=45°.
24.5或,
25.16.等差数列的性质.由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.
26.R
27.25程序框图的运算.经过第一次循环得到的结果为S=1,n=3,过第二次循环得到的结果为S=4,72=5,经过第三次循环得到的结果为S=9,n=7,经过第四次循环得到的结果为s=16,n=9经过第五次循环得到的结果为s=25,n=11,此时不满足判断框中的条件输出s的值为25.故答案为25.
28.1,
29.{x|1<=x<=2}
30.
31.
32.
33.
34.
35.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
36.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
37.
38.
39.
40.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
41.(1)∵
∴又∵等差数列∴∴(2)
42.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1
43.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
44.
45.
X>4
46.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=
47.证明:∵∴则,此函数为奇函数
48.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
49.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴
50.
51.(1)设每吨的成本为w万元,则w=y/x=x/10+90/(x-2)>2-2=4,当且仅当总产量x=30吨时,每吨的成本最低为4万元.(2)设利润为u万元,则w=6x-(x2/10-2x+90)=-x2/10+8x-90=-1/10(x-40)2+70,当总产量x=40吨时,利润最大为70万元.
52.(1)连接BD,由D1D⊥平面ABCD→D1D⊥AC又BD⊥AC,BD∩D1D=D,BD1,BD平面BDD1→AC⊥平面BDD1,又因为BD1包含于平面BDD1→AC⊥BD1.(2)连接EF,因为E,F分别为DD1,CC1的中点,所以EF//DC,且EF=DC,又DC//AB,且EF=AB所以四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工程招投标合同的验收标准
- 2024年度游戏开发与代理运营合同
- 大型专业生产合同范例
- 交换树脂购销合同范例
- 品牌产品销售代理合同范例
- 2024年度广告制作合同
- 2024年度红砖订购合同
- 代理机构中标合同范例
- 2024年医疗器械采购合同
- 2024年家电连锁加盟合同
- 第一章-教育及其本质
- 中国女性生理健康白皮书
- 天然气巡检记录表
- 甲苯磺酸瑞马唑仑临床应用
- 民法典讲座-继承篇
- 外包施工单位入厂安全培训(通用)
- 糖尿病健康知识宣教课件
- 客户接触点管理课件
- Python语言学习通超星课后章节答案期末考试题库2023年
- 医学-心脏骤停急救培训-心脏骤停急救教学课件
- 高中英语-Book 1 Unit 4 Click for a friend教学课件设计
评论
0/150
提交评论