版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖南省株洲市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(22题)1.为了得到函数y=sin1/3x的图象,只需把函数y=sinx图象上所有的点的()A.横坐标伸长到原来的3倍,纵坐标不变
B.横坐标缩小到原来的1/3倍,纵坐标不变
C.纵坐标伸长到原来的3倍,横坐标不变
D.纵坐标缩小到原来的1/3倍,横坐标不变
2.A.第一象限角B.第二象限角C.第一或第二象限角D.小于180°的正角
3.己知向量a=(3,-2),b=(-1,1),则3a+2b
等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)
4.设集合A={x|x≤2或x≥6},B={x||x-1|≤3},则为A∩B()A.[-2,2]B.[-2,4]C.[-4,4]D.[2,4]
5.A.
B.
C.
6.执行如图所示的程序框图,输出n的值为()A.19B.20C.21D.22
7.正方形ABCD的边长为12,PA丄平面ABCD,PA=12,则点P到对角线BD的距离为()A.12
B.12
C.6
D.6
8.在等差数列{an}中,如果a3+a4+a5+a6+a7+a8=30,则数列的前10项的和S10为()A.30B.40C.50D.60
9.一条线段AB是它在平面a上的射景的倍,则B与平面a所成角为()A.30°B.45°C.60°D.不能确定
10.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2
B.2
C.
D.
11.A.
B.
C.
12.下列句子不是命题的是A.5+1-3=4
B.正数都大于0
C.x>5
D.
13.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台
14.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+
B.(x-)2+
C.(x+1)2+2
D.(x+1)2+1
15.随着互联网的普及,网上购物已经逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是()A.7/15B.2/5C.11/15D.13/15
16.AB>0是a>0且b>0的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件
17.下列命题错误的是()A.对于两个向量a,b(a≠0),如果有一个实数,使b=a,则a与b共线
B.若|a|=|b|,则a=b
C.若a,b为两个单位向量,则a·a=b·b
D.若a⊥b,则a·b=0
18.已知等差数列{an}满足a2+a4=4,a3+a5=它的前10项的和Sn()A.138B.135C.95D.23
19.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1丄l2,l2丄l3,l1//l3
B.l1丄l2,l2//l3,l1丄l3
C.l1//l2//l3,l1,l2,l3共面
D.l1,l2,l3共点l1,l2,l3共面
20.已知角α的终边经过点P(2,-1),则(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3
21.若是两条不重合的直线表示平面,给出下列正确的个数()(1)(2)(3)(4)A.lB.2C.3D.4
22.(1-x)4的展开式中,x2的系数是()A.6B.-6C.4D.-4
二、填空题(10题)23.等比数列中,a2=3,a6=6,则a4=_____.
24.
25.已知点A(5,-3)B(1,5),则点P的坐标是_____.
26.展开式中,x4的二项式系数是_____.
27.若△ABC中,∠C=90°,,则=
。
28.设A=(-2,3),b=(-4,2),则|a-b|=
。
29.已知_____.
30.
31.
32.设向量a=(x,x+1),b=(1,2),且a⊥b,则x=_______.
三、计算题(10题)33.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
34.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
35.解不等式4<|1-3x|<7
36.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
37.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
38.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
39.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
40.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
41.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
42.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
四、简答题(10题)43.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。
44.已知函数:,求x的取值范围。
45.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
46.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
47.解不等式组
48.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率
49.证明上是增函数
50.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。
51.平行四边形ABCD中,CBD沿对角线BD折起到平面CBD丄平面ABD,求证:AB丄DE。
52.计算
五、解答题(10题)53.
54.已知f(x)=x3+3ax2+bx+a2(a>1)在x=—1时有极值0.(1)求常数a,b的值;(2)求f(x)的单调区间.
55.
56.己知sin(θ+α)=sin(θ+β),求证:
57.
58.
59.
60.2017年,某厂计划生产25吨至45吨的某种产品,已知生产该产品的总成本y(万元)与总产量x(吨)之间的关系可表示为y=x2/10-2x+90.(1)求该产品每吨的最低生产成本;(2)若该产品每吨的出厂价为6万元,求该厂2017年获得利润的最大值.
61.如图,在四棱锥P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求证:DC丄平面PAC;(2)求证:平面PAB丄平面PAC.
62.已知函数(1)求f(x)的最小正周期及其最大值;(2)求f(x)的单调递增区间.
六、单选题(0题)63.“x=1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
参考答案
1.A三角函数图像的性质.y=sinx横坐标伸长到原来的3倍,纵坐标不变y=sin1/3x.
2.D
3.D
4.A由题可知,B={x|-4≤x≤3},所以A∩B=[-2,2]。
5.C
6.B程序框图的运算.模拟执行如图所示的程序框图知,该程序的功能是计算S=1+2+...+n≥210时n的最小自然数值,由S=n(n+1)/2≥210,解得n≥20,∴输出n的值为20.
7.D
8.C
9.B根据线面角的定义,可得AB与平面a所成角的正切值为1,所以所成角为45°。
10.D
11.B
12.C
13.D空间几何体的三视图.从俯视图可看出该几何体上下底面为半径不等的圆,正视图与侧视图为等腰梯形,故此几何体为圆台.
14.C由题可知,f(0)=2=f(-1+1),因此x=-1时,函数值为2,所以正确答案为C。
15.C古典概型的概率公式.由题意,n=4500-200-2100-1000=1200.所以对网上购物“比较满意”或“满意”的人数为1200+2100=3300,由古典概型概率公式可得对网上购物“比较满意”或“满意”的概率为3300/4500=11/15.
16.Ba大于0且b大于0可得到到ab大于0,但是反之不成立,所以是必要条件。
17.B向量包括长度和方向,模相等方向不一定相同,所以B错误。
18.C因为(a3+a5)-(a2+a4)=2d=6,所以d=3,a1=-4,所以S10=10a1+10*(10-1)d/2=95.
19.B判断直线与直线,直线与平面的位置关系.A项还有异面或者相交,C、D不一定.
20.D三角函数的化简求值.三角函数的定义.因为角a终边经过点P(2,-1),所以tanα=-1/2,sinα-cosα/sinα+cosα=tanα-1/tanα+1=(-1/2-1)f(-1/2+1)=-3
21.B若两条不重合的直线表示平面,由直线和平面之间的关系可知(1)、(4)正确。
22.A
23.
,由等比数列性质可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.
24.-7/25
25.(2,3),设P(x,y),AP=(x-5,y+3),AB=(-4,8),所以x-5=(-4)*(3/4)=-3;得x=2;y+3=8*(3/4)=6;得y=3;所以P(2,3).
26.7
27.0-16
28.
。a-b=(2,1),所以|a-b|=
29.-1,
30.x+y+2=0
31.
32.-2/3平面向量的线性运算.由题意,得A×b=0.所以x+2(x+1)=0.所以x=-2/3.
33.
34.
35.
36.
37.
38.
39.
40.
41.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
42.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
43.x-7y+19=0或7x+y-17=0
44.
X>4
45.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
46.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
47.x2-6x+8>0,∴x>4,x<2(1)(2)联系(1)(2)得不等式组的解集为
48.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
49.证明:任取且x1<x2∴即∴在是增函数
50.
51.
52.
53.
54.(1)f(x)=3x2+6ax+b,由题知:
55.
56.
57.
58.
59.
60.(1)设每吨的成本为w万元,则w=y/x=x/10+90/(x-2)>2-2=4,当且仅当总产量x=30吨时,每吨的成本最低为4万元.(2)设利润为u万元,则w=6x-(x2/10-2x+90)=-x2/10+8x-90=-1/10(x-40)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧城市的创新商业模式考核试卷
- 木材的可再生资源与环境保护考核试卷
- 危险品仓储危险物品管理考核试卷
- 目视化管理与沟通效率考核试卷
- 媒体的影响与社会观念考核试卷
- 激光雷达在光学成像技术中的新应用案例研究考核试卷
- 盐矿经济效益评价与优化调控考核试卷
- 仪器仪表制造业的人才选拔机制考核试卷
- 城镇低保申请告知单
- DB11T 584-2013 保温板薄抹灰外墙外保温施工技术规程
- 校车使用(许可)申请表
- 月度质量例会PPT模板
- 煤矿皮带智能化集控系统PPT教学讲授课件
- 分数乘除法整理复习(课堂PPT)
- 故乡雨正普五线谱(正谱)
- YD_T 3956-2021 电信网和互联网数据安全评估规范_(高清版)
- 2022年物业管理师《物业管理实务》考试题库大全-下(多选题、简答)
- 大班科学活动教案《豆豆家族》含PPT课件
- 压力管道检验员在线考试习题与答案
- 【精品试卷】部编人教版(统编)一年级上册语文第一单元测试卷含答案
- 金属有机化学ppt课件
评论
0/150
提交评论