2022年山东省德州市普通高校对口单招数学自考模拟考试(含答案)_第1页
2022年山东省德州市普通高校对口单招数学自考模拟考试(含答案)_第2页
2022年山东省德州市普通高校对口单招数学自考模拟考试(含答案)_第3页
2022年山东省德州市普通高校对口单招数学自考模拟考试(含答案)_第4页
2022年山东省德州市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年山东省德州市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(22题)1.函数y=3sin+4cos的周期是()A.2πB.3πC.5πD.6π

2.不等式-2x2+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}

3.过点A(1,0),B(0,1)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=0

4.已知a是函数f(x)=x3-12x的极小值点,则a=()A.-4B.-2C.4D.2

5.下列函数是奇函数的是A.y=x+3

B.C.D.

6.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定

7.5人排成一排,甲必须在乙之后的排法是()A.120B.60C.24D.12

8.2与18的等比中项是()A.36B.±36C.6D.±6

9.tan960°的值是()A.

B.

C.

D.

10.由直线l1:3x+4y-7=0与直线l2:6x+8y+1=0间的距离为()A.8/5B.3/2C.4D.8

11.已知角α的终边经过点P(2,-1),则(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3

12.下列命题中,假命题的是()A.a=0且b=0是AB=0的充分条件

B.a=0或b=0是AB=0的充分条件

C.a=0且b=0是AB=0的必要条件

D.a=0或b=0是AB=0的必要条件

13.A.(-2.3)B.(2,3]C.[2,3)D.[-2,3]

14.已知两直线y=ax-2和3x-(a+2)y+l=0互相平.行,则a等于()A.1或-3B.-1或3C.1和3D.-1或-3

15.随着互联网的普及,网上购物已经逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是()A.7/15B.2/5C.11/15D.13/15

16.已知过点A(0,-1),点B在直线x-y+1=0上,直线AB的垂直平分线x+2y-3=0,则点B的坐标是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)

17.函数y=|x|的图像()

A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于y=x直线对称

18.设f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2-x,则f(-1)=()A.-3B.-1C.1D.3

19.已知互相垂直的平面α,β交于直线l若直线m,n满足m⊥a,n⊥β则()A.m//LB.m//nC.n⊥LD.m⊥n

20.A.3B.8C.1/2D.4

21.设则f(f(-2))=()A.-1B.1/4C.1/2D.3/2

22.二项式(x-2)7展开式中含x5的系数等于()A.-21B.21C.-84D.84

二、填空题(10题)23.在△ABC中,若acosA=bcosB,则△ABC是

三角形。

24.化简

25.若,则_____.

26.己知等比数列2,4,8,16,…,则2048是它的第()项。

27.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā)=

28.

29.

30.

31.设A(2,-4),B(0,4),则线段AB的中点坐标为

32.某机电班共有50名学生,任选一人是男生的概率为0.4,则这个班的男生共有

名。

三、计算题(10题)33.解不等式4<|1-3x|<7

34.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

35.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

36.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

37.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

38.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

39.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

40.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

41.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

42.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

四、简答题(10题)43.已知函数:,求x的取值范围。

44.简化

45.已知求tan(a-2b)的值

46.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程

47.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD

48.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

49.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。

50.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程

51.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.

52.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

五、解答题(10题)53.如图,ABCD-A1B1C1D1为长方体.(1)求证:B1D1//平面BC1D;(2)若BC=CC1,,求直线BC1与平面ABCD所成角的大小.

54.证明上是增函数

55.

56.已知函数f(x)=ex(ax+b)—x2—4x,曲线:y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.

57.若x∈(0,1),求证:log3X3<log3X<X3.

58.

59.设函数f(x)=x3-3ax+b(a≠0).(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值;(2)求函数f(x)的单调区间与极值点.

60.在直角梯形ABCD中,AB//DC,AB丄BC,且AB=4,BC=CD=2.点M为线段AB上的一动点,过点M作直线a丄AB.令AM=x,记梯形位于直线a左侧部分的面积S=f(x).(1)求函数f(x)的解析式;(2)作出函数f(x)的图象.

61.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

62.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的两焦点分别F1,F2点P在椭圆C上,且∠PF2F1=90°,|PF1|=6,|PF2|=2.(1)求椭圆C的方程;(2)是否存在直线L与椭圆C相交于A、B两点,且使线段AB的中点恰为圆M:x2+y2+4x-2y=0的圆心,如果存在,求直线l的方程;如果不存在,请说明理由.

六、单选题(0题)63.tan150°的值为()A.

B.

C.

D.

参考答案

1.Dy=3sin(x/3)+4cos(x/3)=5[3/5sin(x/3)+4/5cos(x/3)]=5sin(x/3+α),所以最小正周期为6π。

2.D一元二次不等式方程的计算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.

3.A直线的两点式方程.点代入方程验证.

4.D导数在研究函数中的应用∵f(x)=x3-12x,f’(x)=3x2-12,令f(x)=0,则x1=-2,x2=2.当x∈(-∞,-2),(2,+∞)时,f(x)>0,则f(x)单调递增;当x∈(―2,2)时,f(x)<0,则f(x)单调递减,∴f(x)的极小值点为a=2.

5.C

6.B已知函数是指数函数,当a在(0,1)范围内时函数单调递减,所以选B。

7.C

8.D

9.Atan960°=tan(900°+60°)=tan(5*180°+60°)=tan60°=

10.B点到直线的距离公式.因为直线l2的方程可化为3x+4y+1/2=0所以直线l1与直线l2的距离为=3/2

11.D三角函数的化简求值.三角函数的定义.因为角a终边经过点P(2,-1),所以tanα=-1/2,sinα-cosα/sinα+cosα=tanα-1/tanα+1=(-1/2-1)f(-1/2+1)=-3

12.C

13.B

14.A两直线平行的性质.由题意知两条直线的斜率均存在,因为两直线互相.平

15.C古典概型的概率公式.由题意,n=4500-200-2100-1000=1200.所以对网上购物“比较满意”或“满意”的人数为1200+2100=3300,由古典概型概率公式可得对网上购物“比较满意”或“满意”的概率为3300/4500=11/15.

16.B由于B在直线x-y+1=0上,所以可以设B的坐标为(x,x+1),AB的斜率为,垂直平分线的斜率为,所以有,因此点B的坐标为(2,3)。

17.B由于函数为偶函数,因此函数图像关于y对称。

18.D函数奇偶性的应用.f(-1)=2(-1)2-(―1)=3.

19.C直线与平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因为n⊥β,所以n⊥L.

20.A

21.C函数的计算.f(-2)=2-2=1/4>0,则f(f(-2))=f(1/4)=1-=1-1/2=1/2

22.D

23.等腰或者直角三角形,

24.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

25.27

26.第11项。由题可知,a1=2,q=2,所以an=2n,n=log2an=log22048=11。

27.0.5由于两个事件是对立事件,因此两者的概率之和为1,又两个事件的概率相等,因此概率均为0.5.

28.λ=1,μ=4

29.-1

30.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.

31.(1,0)由题可知,线段AB的中点坐标为x=(2+0)/2=1,y=(-4+4)/2=0。

32.20男生人数为0.4×50=20人

33.

34.

35.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

36.

37.

38.

39.

40.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

41.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

42.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

43.

X>4

44.

45.

46.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为

47.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)

48.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=

PD=PC=2

49.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离

50.

51.∵(1)这条弦与抛物线两交点

52.

53.(1)ABCD-A1B1C1D1为长方体,所以B1D1//BD,又BD包含于平面BC1D,B1D1不包含B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论