




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年安徽省池州市普通高校对口单招数学自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(22题)1.设集合{x|-3<2x-1<3},集合B为函数y=lg(x-1)的定义域,则A∩B=()A.(1,2)B.[1,2]C.[1,2)D.(1,2]
2.函数f(x)=的定义域是()A.(0,+∞)B.[0,+∞)C.(0,2)D.R
3.若x2-ax+b<0的解集为(1,2),则a+b=()A.5B.-5C.1D.-1
4.下列函数中是奇函数,且在(-∞,0)减函数的是()A.y=
B.y=1/x
C.y==x2
D.y=x3
5.A=,是AB=的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件
6.拋物线y2-4x+17=0的准线方程是()A.x=2B.x=-2C.x=1D.x=-1
7.若不等式|ax+2|<6的解集为(-1,2),则实数a等于()A.8B.2C.-4D.-8
8.已知函数f(x)=x2-x+1,则f(1)的值等于()A.-3B.-1C.1D.2
9.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-1,+∞)D.(1,-∞)
10.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8
11.某高职院校为提高办学质量,建设同时具备理论教学和实践教学能力的“双师型”教师队伍,现决定从3名男教师和3名女教师中任选2人一同到某企业实训,则选中的2人都是男教师的概率为()A.
B.
C.
D.
12.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1丄l2,l2丄l3,l1//l3
B.l1丄l2,l2//l3,l1丄l3
C.l1//l2//l3,l1,l2,l3共面
D.l1,l2,l3共点l1,l2,l3共面
13.为A.23B.24C.25D.26
14.椭圆的焦点坐标是()A.(,0)
B.(±7,0)
C.(0,±7)
D.(0,)
15.A.
B.
C.
D.U
16.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=1/xB.y=ex
C.y=-x2+1D.y=lgx
17.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2
B.(x-1)2+(y+1)2=2
C.(x-1)2+(y-1)2=2
D.(x+1)2+(y+1)2=2
18.若集合A={1,2,3},B={1,3,4},则A∩B的子集的个数为()A.2B.3C.4D.16
19.设为双曲线的两个焦点,点P在双曲线上,且满足,则的面积是()A.1
B.
C.2
D.
20.A.B.C.D.
21.若一几何体的三视图如图所示,则这个几何体可以是()A.圆柱B.空心圆柱C.圆D.圆锥
22.函数A.1B.2C.3D.4
二、填空题(10题)23.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是______.
24.已知_____.
25.若l与直线2x-3y+12=0的夹角45°,则l的斜线率为_____.
26.若直线6x-4x+7=0与直线ax+2y-6=0平行,则a的值等于_____.
27.
28.
29.设等差数列{an}的前n项和为Sn,若S8=32,则a2+2a5十a6=_______.
30.不等式|x-3|<1的解集是
。
31.
32.等差数列中,a1>0,S4=S9,Sn取最大值时,n=_____.
三、计算题(10题)33.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
34.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
35.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
36.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
37.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
38.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
39.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
40.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
41.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
42.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
四、简答题(10题)43.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。
44.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点
45.化简
46.解关于x的不等式
47.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
48.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
49.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD
50.已知是等差数列的前n项和,若,.求公差d.
51.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。
52.化简
五、解答题(10题)53.已知函数f(x)=x3-3x2-9x+1.(1)求函数f(x)的单调区间.(2)若f(x)-2a+1≥0对Vx∈[-2,4]恒成立,求实数a的取值范围.
54.在直角梯形ABCD中,AB//DC,AB丄BC,且AB=4,BC=CD=2.点M为线段AB上的一动点,过点M作直线a丄AB.令AM=x,记梯形位于直线a左侧部分的面积S=f(x).(1)求函数f(x)的解析式;(2)作出函数f(x)的图象.
55.已知数列{an}是公差不为0的等差数列a1=2,且a2,a3,a4+1成等比数列.(1)求数列{an}的通项公式;(2)设bn=2/n(an+2),求数列{bn}的前n项和Sn.
56.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.
57.已知函数f(x)=sinx+cosx,x∈R.(1)求函数f(x)的最小正周期和最大值;(2)函数y=f(x)的图象可由y=sinx的图象经过怎样的变换得到?
58.某化工厂生产的某种化工产品,当年产量在150吨至250吨之内,其年生产的总成本:y(万元)与年产量x(吨)之间的关系可近似地表示为y=x2/10-30x+400030x+4000.(1)当年产量为多少吨时,每吨的平均成本最低,并求每吨最低平均成本;(2)若每吨平均出厂价为16万元,求年生产多少吨时,可获得最大的年利润,并求最大年利润.
59.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC,SC的中点,求证:(1)直线EG//平面BDD1B1;(2)平面EFG//平面BDD1B1
60.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1
61.
62.已知直线经过椭圆C:x2/a2+y2/b2=1(a>b>0)的一个顶点B和一个焦点F.(1)求椭圆的离心率;(2)设P是椭圆C上动点,求|PF|-|PB|的取值范围,并求|PF|-|PB||取最小值时点P的坐标.
六、单选题(0题)63.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}
参考答案
1.D不等式的计算,集合的运算.由题知A=[-1,2],B=(1,+∞),∴A∩B=(1,2]
2.Bx是y的算术平方根,因此定义域为B。
3.A一元二次不等式与一元二次方程的应用,根与系数的关系的应用问题.即方程x2-ax+b=0的两根为1,2.由根与系数关系得解得a=3.所以a+b=5.
4.B函数奇偶性,增减性的判断.A是非奇非偶函数;C是偶函数;D是增函数.
5.AA是空集可以得到A交B为空集,但是反之不成立,因此时充分条件。
6.D
7.C
8.C函数值的计算f(1)=1-1+1=1.
9.C函数的定义.x+1>0所以x>-1.
10.C
11.C
12.B判断直线与直线,直线与平面的位置关系.A项还有异面或者相交,C、D不一定.
13.A
14.D
15.B
16.C函数的奇偶性,单调性.根据题意逐-验证,可知y=-x2+1是偶函数且在(0,+∞)上为减函数.
17.B
18.C集合的运算.A∩B={1,3},其子集为22=4个
19.A
20.C
21.B几何体的三视图.由三视图可知该几何体为空心圆柱
22.B
23.1/3古典概型及概率计算公式.两个红球的编号为1,2两个白球的编号为3,4,任取两个的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),两球颜色相同的事件有(1,2)和(3,4),故两球颜色相同概率为2/6=1/3
24.
25.5或,
26.-3,
27.
28.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.
29.16.等差数列的性质.由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.
30.
31.0
32.6或7,由题可知,4a1+6d=9a1+36d,解得a1=-6d,所以Sn=-6dn+n(n+1)d/2=,又因为a1大于0,d小于0,所以当n=6或7时,Sn取最大值。
33.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
34.
35.
36.
37.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
38.
39.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
40.
41.
42.
43.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)
44.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点
45.sinα
46.
47.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
48.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
49.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)
50.根据等差数列前n项和公式得解得:d=4
51.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510
(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510
选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897
52.
53.
54.
55.(1)设数列{an}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2=(2+d).(3+3d),解得d=2,或d=-1,当d=-1时a3=0与a2,a3,a4+1成等比数列矛盾,舍去.所以d=2,所以an=a1+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 回顾高中师生情谊的优美语句摘抄
- 数字化时代下文化遗产展示与传播在文化遗产地文化产业发展中的应用报告
- 工业互联网平台AR交互技术在工业设备状态监测与预警中的应用研究报告001
- 2025年元宇宙社交平台社交电商模式创新与挑战报告
- 咨询工程师宏观课件下载
- 咨询工程师培训视频课件
- 咨询工程师串讲课件
- 2025年医药企业研发外包(CRO)模式药物研发生物技术产品研发报告
- 2025年医药企业研发外包(CRO)技术转移与人才培养报告
- 2025年医药流通企业供应链优化与成本控制智能供应链管理供应链管理政策法规影响报告
- (2025)发展对象考试试题附及答案
- 2025家庭装饰装修合同范本
- 《重大火灾隐患判定方法》GB 35181-2017
- 奇瑞汽车售后服务蓝图
- 《农药经营许可培训班》考试试卷
- 口腔临床药物学:自制制剂、防龋药物
- 安徽省技能人才评价考评员考试题库
- 网络域名及域名解析PPT课件
- 浙江省2016年10月物理学业水平考试试题
- 苏州大学物理化学真题
- 《FABI、ACE、CPR介绍话术》
评论
0/150
提交评论