版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年湖南省邵阳市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(22题)1.A.
B.
C.
2.下列函数中是偶函数的是()A.y=x|x|B.y=sinx|x|C.y=x2+1D.y=xsinx+cosx
3.A.B.C.D.
4.A.3B.8C.1/2D.4
5.已知a=(1,-1),b=(-1,2),则(2a+b)×a=()A.1B.-1C.0D.2
6.己知,则这样的集合P有()个数A.3B.2C.4D.5
7.某高职院校为提高办学质量,建设同时具备理论教学和实践教学能力的“双师型”教师队伍,现决定从3名男教师和3名女教师中任选2人一同到某企业实训,则选中的2人都是男教师的概率为()A.
B.
C.
D.
8.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6
9.已知A={x|x+1>0},B{-2,-1,0,1},则(CRA)∩B=()A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}
10.已知过点A(0,-1),点B在直线x-y+1=0上,直线AB的垂直平分线x+2y-3=0,则点B的坐标是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)
11.设集合M={1,2,4,5,6},集合N={2,4,6},则M∩N=()A.{2,4,5,6}B.{4,5,6}C.{1,2,3,4,5,6}D.{2,4,6}
12.设函数f(x)=x2+1,则f(x)是()
A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数
13.已知角α的终边经过点P(2,-1),则(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3
14.直线4x+2y-7=0和直线3x-y+5=0的夹角是()A.30°B.45°C.60°D.90°
15.下列函数是奇函数的是A.y=x+3
B.C.D.
16.已知函数f(x)=x2-x+1,则f(1)的值等于()A.-3B.-1C.1D.2
17.把6本不同的书分给李明和张强两人,每人3本,不同分法的种类数为()A.
B.
C.
D.
18.设m>n>1且0<a<1,则下列不等式成立的是()A.
B.
C.
D.
19.已知向量a=(sinθ,-2),6=(1,cosθ),且a⊥b,则tanθ的值为()A.2B.-2C.1/2D.-1/2
20.若不等式x2+x+c<0的解集是{x|-4<x<3},则c的值等于()A.12B.-12C.11D.-11
21.x2-3x-4<0的等价命题是()A.x<-1或x>4B.-1<x<4C.x<-4或x>1D.-4<x<1
22.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=1/xB.y=ex
C.y=-x2+1D.y=lgx
二、填空题(10题)23.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.
24.如图所示的程序框图中,输出的S的值为______.
25.
26.集合A={1,2,3}的子集的个数是
。
27.不等式的解集为_____.
28.设A=(-2,3),b=(-4,2),则|a-b|=
。
29.算式的值是_____.
30.
31.已知函数,若f(x)=2,则x=_____.
32.sin75°·sin375°=_____.
三、计算题(10题)33.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
34.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
35.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
36.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
37.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
38.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
39.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
40.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
41.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
42.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
四、简答题(10题)43.简化
44.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长
45.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。
46.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值
47.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积
48.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
49.在等差数列中,已知a1,a4是方程x2-10x+16=0的两个根,且a4>a1,求S8的值
50.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC
51.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。
52.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
五、解答题(10题)53.在直角梯形ABCD中,AB//DC,AB丄BC,且AB=4,BC=CD=2.点M为线段AB上的一动点,过点M作直线a丄AB.令AM=x,记梯形位于直线a左侧部分的面积S=f(x).(1)求函数f(x)的解析式;(2)作出函数f(x)的图象.
54.已知数列{an}是首项和公差相等的等差数列,其前n项和为Sn,且S10=55.(1)求an和Sn(2)设=bn=1/Sn,数列{bn}的前n项和为T=n,求Tn的取值范围.
55.
56.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值
57.
58.已知函数f(x)=ex(ax+b)—x2—4x,曲线:y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.
59.
60.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的两焦点分别F1,F2点P在椭圆C上,且∠PF2F1=90°,|PF1|=6,|PF2|=2.(1)求椭圆C的方程;(2)是否存在直线L与椭圆C相交于A、B两点,且使线段AB的中点恰为圆M:x2+y2+4x-2y=0的圆心,如果存在,求直线l的方程;如果不存在,请说明理由.
61.已知函数f(x)=ax2-6lnx在点(1,f(1))处的切线方程为y=1;(1)求实数a,b的值;(2)求f(x)的最小值.
62.
六、单选题(0题)63.A.偶函数B.奇函数C.既不是奇函数,也不是偶函数D.既是奇函数,也是偶函数
参考答案
1.B
2.D
3.A
4.A
5.A平面向量的线性运算.因为a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)×a==(1,0)×(1,-1)=1
6.C
7.C
8.D设公比等于q,则由题意可得,,解得,或。当时,,当时,,所以结果为。
9.A交集
10.B由于B在直线x-y+1=0上,所以可以设B的坐标为(x,x+1),AB的斜率为,垂直平分线的斜率为,所以有,因此点B的坐标为(2,3)。
11.D集合的计算∵M={1,2,3,4,5,6},N={2,4,6},∴M∩N={2,4,6}
12.B由题可知,f(x)=f(-x),所以函数是偶函数。
13.D三角函数的化简求值.三角函数的定义.因为角a终边经过点P(2,-1),所以tanα=-1/2,sinα-cosα/sinα+cosα=tanα-1/tanα+1=(-1/2-1)f(-1/2+1)=-3
14.B
15.C
16.C函数值的计算f(1)=1-1+1=1.
17.D
18.A同底时,当底数大于0小于1时,减函数;当底数大于1时,增函数,底数越大值越大。
19.A平面向量的线性运算∵a⊥b,∴b=sinθ-2cosθ=0,∴tanθ=2.
20.B
21.B
22.C函数的奇偶性,单调性.根据题意逐-验证,可知y=-x2+1是偶函数且在(0,+∞)上为减函数.
23.-3或7,
24.11/12流程图的运算.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=1/2+1/4+1/6的值,由于1/2+1/4+1/6=11/12故答案为:11/12
25.π/2
26.8
27.-1<X<4,
28.
。a-b=(2,1),所以|a-b|=
29.11,因为,所以值为11。
30.5
31.
32.
,
33.
34.
35.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
36.
37.
38.
39.
40.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
41.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
42.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
43.
44.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则
45.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
46.
47.
48.由已知得:由上可解得
49.方程的两个根为2和8,又∴又∵a4=a1+3d,∴d=2∵。
50.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC
51.
∵μ//v∴(2x+1.4)=(2-x,3)得
52.
53.
54.(1)设数列{an}的公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代签合同模板
- 2024年专用:集装箱租赁合同样本
- 互联网旅游服务平台开发合同
- 个体商户合同模板
- 商务宾馆转让合同模板
- 新房装修拆除合同模板
- 工厂废弃物清运与管理方案
- 供货与安装合同模板
- 师傅代教合同模板
- 商业用住房合同模板
- 智慧小区建设售后服务方案
- 软件使用授权书
- Unit1KnowingMeKnowingYou如何写读后感课件高一下学期英语
- 脑卒中后吞咽障碍患者进食护理(2023年中华护理学会团体标准)
- DB21T 2885-2023居住建筑节能设计标准
- 压覆矿产资源调查评估规范
- 2023秋二年级上册《小学生数学报》数学学习能力调研卷
- 项目三婴幼儿皮肤疾病预防与照护
- 第3课时-六宫格数独课件
- 教学课件-律师实务
- 亮化工程可行性研究报告
评论
0/150
提交评论