版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年广东省佛山市普通高校对口单招数学自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(22题)1.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6
2.执行如图所示的程序,若输人的实数x=4,则输出结果为()A.4B.3C.2D.1/4
3.下列函数为偶函数的是A.B.C.
4.下列函数中是奇函数,且在(-∞,0)减函数的是()A.y=
B.y=1/x
C.y==x2
D.y=x3
5.A.
B.
C.
D.
6.A.B.C.D.
7.已知函数f(x)=x2-x+1,则f(1)的值等于()A.-3B.-1C.1D.2
8.椭圆x2/16+y2/9的焦点坐标为()A.(,0)(-,0)
B.(4,0)(-4,0)
C.(3,0)(-3,0)
D.(7,0)(-7,0)
9.A.11B.99C.120D.121
10.当时,函数的()A.最大值1,最小值-1
B.最大值1,最小值
C.最大值2,最小值-2
D.最大值2,最小值-1
11.顶点坐标为(-2,-3),焦点为F(-4,3)的抛物线方程是()A.(y-3)2=-4(x+2)
B.(y+3)2=4(x+2)
C.(y-3)2=-8(x+2)
D.(y+3)2=-8(x+2)
12.A.(1,2)B.(3,4)C.(0,1)D.(5,6)
13.以坐标轴为对称轴,离心率为,半长轴为3的椭圆方程是()A.
B.或
C.
D.或
14.A.B.C.D.R
15.{已知集合A={-1,0,1},B={x|-1≤x<1}则A∩B=()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}
16.函数y=sinx+cosx的最小值和最小正周期分别是()A.
B.-2,2π
C.
D.-2,π
17.设m>n>1且0<a<1,则下列不等式成立的是()A.
B.
C.
D.
18.不等式-2x22+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}
19.已知让点P到椭圆的一个焦点的距离为3,则它到另一个焦点的距离为()A.2B.3C.5D.7
20.设复数z=1+i(i为虚数单位),则2/z+z2=()A.l+iB.l-iC.-l-iD.-l+i
21.在等差数列{an}中,若a3+a17=10,则S19等于()A.65B.75C.85D.95
22.拋物线y2-4x+17=0的准线方程是()A.x=2B.x=-2C.x=1D.x=-1
二、填空题(10题)23.10lg2=
。
24.(x+2)6的展开式中x3的系数为
。
25.
26.双曲线x2/4-y2/3=1的离心率为___.
27.
28.口袋装有大小相同的8个白球,4个红球,从中任意摸出2个,则两球颜色相同的概率是_____.
29.
30.不等式|x-3|<1的解集是
。
31.
32.要使的定义域为一切实数,则k的取值范围_____.
三、计算题(10题)33.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
34.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
35.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
36.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
37.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
38.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
39.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
40.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
41.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
42.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
四、简答题(10题)43.化简a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)
44.简化
45.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC
46.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。
47.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。
48.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
49.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数
50.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.
51.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
52.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
五、解答题(10题)53.已知圆X2+y2=5与直线2x-y-m=0相交于不同的A,B两点,O为坐标原点.(1)求m的取值范围;(2)若OA丄OB,求实数m的值.
54.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
55.已知等差数列{an}的前72项和为Sn,a5=8,S3=6.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=72,求k的值.
56.已知函数f(x)=x2-2ax+a,(1)当a=2时,求函数f(x)在[0,3]上的值域;(2)若a<0,求使函数f(x)=x2-2ax+a的定义域为[―1,1],值域为[一2,2]的a的值.
57.已知a为实数,函数f(x)=(x2+l)(x+a).若f(-1)=0,求函数:y=f(x)在[-3/2,1]上的最大值和最小值。
58.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2,且|F1F2|=2,点(1,3/2)在该椭圆上.(1)求椭圆C的方程;(2)过F1的直线L与椭圆C相交于A,B两点,以F2为圆心为半径的圆与直线L相切,求△AF2B的面积.
59.
60.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为,在C上;(1)求C的方程;(2)直线L不过原点O且不平行于坐标轴,L与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线L的斜率的乘积为定值.
61.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点.(1)求圆C的方程;(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.
62.已知椭圆C的重心在坐标原点,两个焦点的坐标分别为F1(4,0),F2(-4,0),且椭圆C上任一点到两焦点的距离和等于10.求:(1)椭圆C的标准方程;(2)设椭圆C上一点M使得直线F1M与直线F2M垂直,求点M的坐标.
六、单选题(0题)63.函数A.1B.2C.3D.4
参考答案
1.D设公比等于q,则由题意可得,,解得,或。当时,,当时,,所以结果为。
2.C三角函数的运算∵x=4>1,∴y=㏒24=2
3.A
4.B函数奇偶性,增减性的判断.A是非奇非偶函数;C是偶函数;D是增函数.
5.A
6.A
7.C函数值的计算f(1)=1-1+1=1.
8.A椭圆的定义c2=a2-b2=7,所以c=,所以焦点坐标为(,0)(-,0).
9.C
10.D,因为,所以,,,所以最大值为2,最小值为-1。
11.C四个选项中,只有C的顶点坐标为(-2,3),焦点为(-4,3)。
12.A
13.B由题意可知,焦点在x轴或y轴上,所以标准方程有两个,而a=3,c/a=1/3,所以c=1,b2=8,因此答案为B。
14.B
15.B集合的运算.A中的元素-1,0在B中,1不在B中,所以A∩B={-1,0}.
16.A三角函数的性质,周期和最值.因为y=,所以当x+π/4=2kπ-π/2k∈Z时,ymin=T=2π.
17.A同底时,当底数大于0小于1时,减函数;当底数大于1时,增函数,底数越大值越大。
18.D不等式的计算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.
19.D
20.A复数的计算.∵Z=1+i,∴2/z+z2=2/1+i(1+i)2===1-i+2i=1+i.
21.D
22.D
23.lg102410lg2=lg1024
24.160
25.
26.e=双曲线的定义.因为
27.
28.
29.2π/3
30.
31.12
32.-1≤k<3
33.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
34.
35.
36.
37.
38.
39.
40.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
41.
42.
43.原式=
44.
45.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC
46.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=
PD=PC=2
47.
48.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
49.
50.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=
51.由已知得:由上可解得
52.
53.
54.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定义在(-1,1)上的奇函数.(3)设-1<x1<x2<1,则f(x1)-f(x2)=lo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地铁车站维修注浆施工合同
- 宠物店前台接待合同模板
- 国际分析设备租赁协议
- 团购协议模板
- 工厂空调系统安装合同
- 机场对讲系统安装协议
- 装饰设计招投标政策解读
- 电子竞技公司租赁协议
- 生态农业搅拌站招标文件
- 医学实验室样本保存
- 江西丹康制药有限公司原料药、口服制剂等生产基地项目环境影响报告书
- 物品放行单(标准模版)
- 引水隧洞洞身开挖与支护施工方案
- 政工程设施养护维修估算指标
- 成都锦里商街、宽窄巷旧城改造商业案例分析
- 外贸公司组织架构、岗位职责
- 先进监理单位汇报材料整理
- 机械设计课程设计ZDD1-B说明书
- ALC板材安装施工方案
- 人教版-高一至高三全部英语课文朗读与听力MP3链接
- 第4课 我来画棵“家庭树”第一课时 ppt课件
评论
0/150
提交评论