版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八下总复习平行四边形整理课件四边形之间的关系四边形平行四边形矩形正方形两组对边分别平行有一个角是直角有一组邻边相等有一个角是直角有一组邻边相等菱形菱形有一个角是直角且有一组邻边相等整理课件2.平行四边形的性质与判定的关系.平行四边形方法1:两组对边分别平行方法2:一组对边平行且相等方法3:两组对边分别相等方法4:两条对角线互相平分方法5:两组对角分别相等的四边形.整理课件【例1】(2013·徐州中考)如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC交CD于点F.(1)求证:DE=BF.(2)连接EF,写出图中所有的全等三角形.(不要求证明)整理课件【中考集训】1.(2013·益阳中考)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD整理课件2.(2013·哈尔滨中考)如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4B.3C.D.2整理课件3.(2013·深圳中考)如图,F,C是线段AD上的两点,AB∥DE,BC∥EF,AF=DC,连接AE,BD,求证:四边形ABDE是平行四边形.整理课件4.(2013·日照中考)如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连接AC,CE,使AB=AC.(1)求证:△BAD≌△ACE.(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.整理课件5.(2013·重庆中考)已知在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF,EG,AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长.(2)求证:整理课件考点2特殊平行四边形的性质与判定【知识点睛】平行四边形、矩形、菱形、正方形性质的区别与联系1.边:它们都具有对边平行且相等的性质,而菱形和正方形还具有四条边都相等的性质.整理课件2.角:它们都具有对角相等且邻角互补的性质,而矩形和正方形还具有四个角都是90°的性质.3.对角线:它们都具有对角线互相平分的性质,而矩形和正方形的对角线还具有相等的性质,菱形和正方形的对角线还具有互相垂直的性质.整理课件【例2】(2013·雅安中考)在▱ABCD中,点E,F分别在AB,CD上,且AE=CF.(1)求证:△ADE≌△CBF.(2)若DF=BF,求证:四边形DEBF为菱形.整理课件【中考集训】1.(2013·湘西州中考)下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直整理课件2.(2013·成都中考)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1B.2C.3D.4整理课件3.(2013·内江中考)已知菱形ABCD的两条对角线分别为6和8,M,N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN的最小值=_________.整理课件4.(2013·青岛中考)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM.(2)判断四边形MENF是什么特殊四边形,并证明你的结论.(3)当AD∶AB=______时,四边形MENF是正方形(只写结论,不需证明).整理课件5.(2013·鞍山中考)如图,在正方形ABCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 托儿所服务的亲子关怀考核试卷
- 煤炭行业的全球化竞争与合作方式考核试卷
- 衡阳课件效果教学课件
- DB11T 934-2012 儿童福利机构婴幼儿早期发展干预技术规范
- DB11∕T 1812-2020 既有玻璃幕墙安全性检测与鉴定技术规程
- 孔雀妆课件教学课件
- 服装店铺新员工培训计划方案
- 走进丽江课件教学课件
- 淮阴工学院《建筑工程概预算》2022-2023学年第一学期期末试卷
- 淮阴工学院《机械设计基础》2022-2023学年第一学期期末试卷
- 内分泌科利用PDCA循环提高全院胰岛素存放的合格率品管圈QCC成果汇报
- 犹太律法613条具体条款
- 《HSK标准教程3》第10课
- 体育教育与中小学生身心健康的关系研究
- 商场电缆施工方案
- 2023中国职业教育行业发展趋势报告-多鲸教育研究院
- 《中国老年骨质疏松症诊疗指南(2023)》解读-
- “双减”背景下小学英语课后作业设计实践探究 论文
- 广东省佛山市顺德区部分学校2023-2024学年四年级上学期期中语文试卷
- 南方航空空乘招聘报名表
- 灭火器充装检修方案范本
评论
0/150
提交评论