




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“任意画一个三角形,其内角和是”2.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为()A. B. C. D.3.如图所示,几何体的左视图为()A. B. C. D.4.如图,在菱形ABCD中,对角线AC、BD相交于点O,,则四边形AODE一定是()A.正方形 B.矩形 C.菱形 D.不能确定5.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:,则AC的长是()A.10米 B.米 C.15米 D.米6.在平面直角坐标系中,点P(1,﹣2)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P对应点的坐标为()A.(2,﹣4) B.(2,﹣4)或(﹣2,4)C.(,﹣1) D.(,﹣1)或(﹣,1)7.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是()A. B.C. D.8.在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD:DB=4:5,下列结论中正确的是A. B. C. D.9.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其左视图是(
)A. B. C. D.10.一个不透明的盒子中装有5个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大11.一元二次方程的根的情况为()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根12.在平面直角坐标系中,点P(m,1)与点Q(﹣2,n)关于原点对称,则mn的值是()A.﹣2 B.﹣1 C.0 D.2二、填空题(每题4分,共24分)13.抛物线向左平移2个单位,再向上平移1个单位,得到的抛物线是______.14.若抛物线y=x2﹣4x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),则关于x的方程x2﹣4x+m=k(x﹣1)﹣11的解为_____.15.如图,在一个正方形围栏中均为地散步着许多米粒,正方形内有一个圆(正方形的内切圆)一只小鸡在围栏内啄食,则小鸡正在圆内区域啄食的概率为________.16.一元二次方程的解是__.17.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).18.如图,是的切线,为切点,,,点是上的一个动点,连结并延长,交的延长线于,则的最大值为_________
三、解答题(共78分)19.(8分)城市规划期间,欲拆除一电线杆AB,已知距电线杆AB水平距离14m的D处有一大坝,背水坡CD的坡度i=2:1,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道.试问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域.)(≈1.732,≈1.414)20.(8分)某校为了解每天的用电情况,抽查了该校某月10天的用电量,统计如下(单位:度):用电量9093102113114120天数112312(1)该校这10天用电量的众数是度,中位数是度;(2)估计该校这个月的用电量(用30天计算).21.(8分)小明、小林是景山中学九年级的同班同学,在六月份举行的招生考试中,他俩都被亭湖高级中学录取,并将被编入A、B、C三个班,他俩希望编班时分在不同班.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人不在同班的概率.22.(10分)如图1,在△ABC中,∠BAC=90°,AB=AC,D为边AB上一点,连接CD,在线段CD上取一点E,以AE为直角边作等腰直角△AEF,使∠EAF=90°,连接BF交CD的延长线于点P.(1)探索:CE与BF有何数量关系和位置关系?并说明理由;(2)如图2,若AB=2,AE=1,把△AEF绕点A顺时针旋转至△AE'F′,当∠E′AC=60°时,求BF′的长.23.(10分)如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x﹣4与反比例函数y=交于点A,交y轴于C点.(1)求k的值;(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.24.(10分)佩佩宾馆重新装修后,有间房可供游客居住,经市场调查发现,每间房每天的定价为元,房间会全部住满,当每间房每天的定价每增加元时,就会有一间房空闲,如果游客居住房间,宾馆需对每间房每天支出元的各项费用.设每间房每天的定价增加元,宾馆获利为元.(1)求与的函数关系式(不用写出自变量的取值范围);(2)物价部门规定,春节期间客房定价不能高于平时定价的倍,此时每间房价为多少元时宾馆可获利元?25.(12分)已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO,若.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求的面积.(3)在第一象限内,求当一次函数值大于反比例函数值时的反比例函数值取值范围.26.解方程:2(x-3)2=x2-9
参考答案一、选择题(每题4分,共48分)1、D【分析】了解事件发生的可能性与必然事件、不可能事件、可能事件之间的关系.【详解】解:A错误.可能性很大的事件并非必然发生,必然发生的事件的概率为1;B错误.可能性很小的事件指事件发生的概率很小,不可能事件的概率为0;C错误.掷一枚普通的正方体骰子,结果恰好点数“6”朝上的概率为.为可能事件.D正确.三角形内角和是180°.故选:D.【点睛】本题考查事件发生的可能性,注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生.2、C【解析】分析:根据题意得△AOB∽△COD,根据相似三角形的性质可求出CD的长.详解:∵,,∴∠ABO=∠CDO,∵∠AOB=∠COD,∴△AOB∽△COD,∴∵AO=4m,AB=1.6m,CO=1m,∴.故选C.点睛:本题考查了相似三角形的判定与性质,正确得出△AOB∽△COD是解题关键.3、A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形故选:A.【点睛】本题考查简单组合体的三视图,难度不大.4、B【分析】根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形;【详解】证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=∠AOD=90°,∴四边形AODE是矩形.故选B.【点睛】本题考查了菱形的性质、矩形的判定与性质、平行四边形的判定;熟练掌握矩形的判定与性质、菱形的性质是解决问题的关键.5、B【解析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1:;∴AC=BC÷tanA=5米;故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.6、B【分析】根据位似变换的性质计算即可.【详解】点P(1,﹣2)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(1×2,﹣2×2)或(1×(﹣2),﹣2×(﹣2)),即(2,﹣4)或(﹣2,4),故选:B.【点睛】本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.7、B【解析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得图象的解析式为:y=(x+1)1-1;
故选:B.【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.8、B【分析】根据平行线分线段成比例,相似三角形性质,以及合比性质,分别对每个选项进行判断,即可得到答案.【详解】解:如图,在△ABC中,DE∥BC,AD∶DB=4∶5,则∴△ADE∽△ABC,∴,故A错误;则,故B正确;则,故C错误;则,故D错误.故选择:B.【点睛】本题考查了相似三角形的性质,平行线分线段成比例,合比性质,解题的关键是熟练掌握平行线分线段成比例的性质.9、B【解析】根据左视图的定义“在侧面内,从左往右观察物体得到的视图”判断即可.【详解】根据左视图的定义,从左往右观察,两个正方体得到的视图是一个正方形,圆锥得到的视图是一个三角形,由此只有B符合故选:B.【点睛】本题考查了三视图中的左视图的定义,熟记定义是解题关键.另外,主视图和俯视图的定义也是常考点.10、D【解析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【详解】∵摸到红球是随机事件,∴选项A不符合题意;∵摸到白球是随机事件,∴选项B不符合题意;
∵红球比白球多,∴摸到红球比摸到白球的可能性大,∴选项C不符合题意,D符合题意.故选:D.【点睛】此题主要考查了可能性的大小,以及随机事件的判断,要熟练掌握,解答此题的关键是要明确:在一定条件下,可能发生也可能不发生的事件,称为随机事件.11、D【分析】先根据计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】因为△=,所以方程无实数根.故选:D.【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.12、A【分析】已知在平面直角坐标系中,点P(m,1)与点Q(﹣2,n)关于原点对称,则P和Q两点横坐标互为相反数,纵坐标互为相反数即可求得m,n,进而求得mn的值.【详解】∵点P(m,1)与点Q(﹣2,n)关于原点对称∴m=2,n=-1∴mn=-2故选:A【点睛】本题考查了直角坐标系中,关于原点对称的两个点的坐标特点,它们的横坐标互为相反数,纵坐标互为相反数.二、填空题(每题4分,共24分)13、【分析】先得到抛物线的顶点坐标为(0,0),根据平移规律得到平移后抛物线的顶点坐标,则利用顶点式可得到平移后的抛物线的解析式为.【详解】抛物线的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移1个单位得到的点的坐标为(,1),
所以平移后的抛物线的解析式为.
故答案为:.【点睛】本题考查了二次函数图象的平移:由于抛物线平移后的形状不变,故a不变,再考虑平移后的顶点坐标,即可求出解析式.14、x1=2,x2=1【分析】根据抛物线y=x2﹣1x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),可以求得m和k的值,然后代入题目中的方程,即可解答本题.【详解】解:∵抛物线y=x2﹣1x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),∴﹣9=22﹣1×2+m,﹣9=2k﹣13,解得,m=﹣5,k=2,∴抛物线为y=x2﹣1x﹣5,直线y=2x﹣13,∴所求方程为x2﹣1x﹣5=2(x﹣1)﹣11,解得,x1=2,x2=1,故答案为:x1=2,x2=1.【点睛】本题主要考查的是二次函数与一次函数的交点问题,交点既满足二次函数也满足一次函数,带入即可求解.15、【分析】设正方形的边长为a,再分别计算出正方形与圆的面积,计算出其比值即可.【详解】解:设正方形的边长为a,则S正方形=a2,因为圆的半径为,所以S圆=π()2=,所以“小鸡正在圆圈内”啄食的概率为:故答案为:【点睛】本题考查几何概率,掌握正方形面积公式正确计算是解题关键.16、x1=1,x2=﹣1.【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±1,即x1=1,x2=﹣1,故答案为x1=1,x2=﹣1.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.17、55【分析】连接OA,OB,根据圆周角定理可得解.【详解】连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°.∴.∴∠C和∠AOB是同弧所对的圆周角和圆心角,∴∠C=∠AOB=55°.18、【分析】根据题意可知当ED与相切时,EC最大,再利用△ECD∽△EBA,找到对应边的关系即可求解.【详解】解:如图,当CD⊥DE于点D时EC最大.∵CD⊥DE,是的切线∴∠EDC=∠EAB=90°又∵∠E=∠E∴△ECD∽△EBA∴∴则∵,,∠EAB=90°∴CD=AC=1在Rt△ABE中利用勾股定理得即则∴可化为,解得或(舍去)综上所述,的最大值为.【点睛】本题考查了切线和相似的性质,能通过切线的性质找到符合要求的点,再能想到相似得到对应边的关系是解答此题的关键.三、解答题(共78分)19、不必封上人行道【分析】过C点作CG⊥AB交AB于G.求需不需要将人行道封上实际上就是比较AB与BE的长短,已知BD,DF的长度,那么AB的长度也就求出来了,现在只需要知道BE的长度即可,有BF的长,ED的长,缺少的是DF的长,根据“背水坡CD的坡度i=1:2,坝高CF为2m”DF是很容易求出的,这样有了CG的长,在△ACG中求出AG的长度,这样就求出AB的长度,有了BE的长,就可以判断出是不是需要封上人行道了.【详解】过C点作CG⊥AB交AB于G.在Rt△CDF中,水坡CD的坡度i=2:1,即tan∠CDF=2,∵CF=2,∴DF=1.∴BF=BD+DF=12+1=13.∴CG=13,在Rt△ACG中,∵∠ACG=30°,∴AG=CG·tan30°=13×=7.5m∴AB=AG+BG=7.5+2=9.5m,BE=12m,AB<BE,∴不必封上人行道.【点睛】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.20、(1)113;113;(2)3240度.【分析】(1)分别利用众数、中位数的定义求解即可;(2)根据平均数的计算方法计算出平均用电量,再乘以总用电天数即可得解.【详解】解:(1)113度出现了3此,出现的次数最多,故众数为113度;将数据按从小到大的顺序排列,共10个数据,位于第5,6的数均为113,故中位数为113度;(2)(度).答:估计该校该月的用电量为3240度.【点睛】本题考查的知识点是中位数、众数的概念定义以及算数平均线的计算方法,属于基础题目,易于理解掌握.21、(1)9种结果,见解析;(2)P=【分析】(1)小明有3种分班情况,小林有3种分班情况,共有9种结果;(2)根据(1)即可列式求出两人不在同班的概率.【详解】(1)树状图如下:所有可能的结果共有9种.(2)两人不在同班的有6种,∴P(两人不在同班)==.【点睛】此题考查求事件的概率,熟记概率的公式,正确代入求值即可.22、(1)CE=BF,CE⊥BF,理由见解析;(2)【分析】(1)由“SAS”可证△AEC≌△AFB,可得CE=BF,∠ABF=∠ACE,进而可得CE⊥BF;(2)过点E'作E'H⊥AC,连接E'C,由直角三角形的性质和勾股定理可求E'C的长,由“SAS”可证△F'AB≌△E'AC,可得BF'=CE'=.【详解】(1)CE=BF,CE⊥BF,理由如下:∵∠BAC=∠EAF=90°,∴∠EAC=∠FAB,又∵AE=AF,AB=AC,∴△AEC≌△AFB(SAS)∴CE=BF,∠ABF=∠ACE,∵∠ADC=∠BDP,∴∠BPD=∠CAD=90°,∴CE⊥BF;(2)过点E'作E'H⊥AC,连接E'C,∵把△AEF绕点A顺时针旋转至△AE'F′,∴AF=AE=AE'=AF'=1,∠BAF'=∠E'AC=60°,∵∠E'AC=60°,∠AHE'=90°,∴∠AE'H=30°,∴AH=AE'=,E'H=AH=,∴HC=AC﹣AH=,∴E'C==,∵AF'=AE',∠F'AB=∠E'AC=60°,AB=AC,∴△F'AB≌△E'AC(SAS)∴BF'=CE'=.【点睛】本题主要考查勾股定理和三角形全等的判定和性质定理,旋转的性质,添加辅助线,构造直角三角形,是解题的关键.23、(1)-4;(2)见解析;(3)点E的坐标为(﹣4,1).【分析】(1)根据一次函数图象上点的坐标特征求出点A的坐标,利用待定系数法求出k;
(2)先求出点D的坐标,求出∠ADB=45°,∠ODC=45°,从而得解;
(3)设出点E的坐标,根据三角形的面积公式解答.【详解】(1)设点B的坐标为(a,0),∵∠ABO=90°,AB=BO,∴点A的坐标为(a,﹣a),∵点A在直线y=﹣3x﹣4上,∴﹣a=﹣3a﹣4,解得,a=﹣2,即点A的坐标为(﹣2,2),∵点A在反比例函数y=上,∴k=﹣4;(2)∵点D与点O关于AB对称,∴点D的坐标为(﹣4,0)∴OD=4,∴DB=BA=2,则∠ADB=45°,∵直线y=﹣3x﹣4交y轴于C点,∴点C的坐标为(0,﹣4),∴OD=OC,∴∠ODC=45°,∴∠ADC=∠ADB+∠ODC=90°,即△ACD是直角三角形;(3)设点E的坐标为(m,﹣),∵S△OCE=S△OCD,∴×4×4=×4×(﹣m),解得,m=﹣4,∴﹣=1,∴点E的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川外国语大学成都学院《园林PSSU》2023-2024学年第二学期期末试卷
- 5层知识树课件
- 幼儿园手指游戏课程研究
- 阳光学院《航天医学工程概论》2023-2024学年第二学期期末试卷
- 2025年福建省福州市第十中学高三3.20联考考试英语试题含解析
- 开封市龙亭区2025年小学六年级数学毕业检测指导卷含解析
- 重庆第二师范学院《室内深化设计》2023-2024学年第二学期期末试卷
- 山东华宇工学院《机械设计》2023-2024学年第二学期期末试卷
- 浙江省杭州地区七校联考2024-2025学年高三下学期第一次统一考试(1月)化学试题含解析
- 贵州交通职业技术学院《包装系统设计》2023-2024学年第一学期期末试卷
- 第9课《木兰诗》教学设计 2024-2025学年统编版语文七年级下册
- 中央2025年中国日报社及所属事业单位招聘5人笔试历年参考题库附带答案详解
- 2024年成都市新都区教育局所属事业单位招聘中小学教师笔试真题
- 2025-2030中国露酒行业市场深度分析及发展趋势与投资战略研究报告
- 生产车间5S管理制度
- 2025年吉林铁道职业技术学院单招职业技能测试题库一套
- 2023学年杭州市余杭区七年级语文下学期期中考试卷附答案解析
- 《道路交通安全法》课件完整版
- 加快形成农业新质生产力
- 全国园地、林地、草地分等定级数据库规范1123
- 护理中医新技术新项目
评论
0/150
提交评论