八年级数学下册第一章三角形的证明1.4.2角平分线新版北师大版_第1页
八年级数学下册第一章三角形的证明1.4.2角平分线新版北师大版_第2页
八年级数学下册第一章三角形的证明1.4.2角平分线新版北师大版_第3页
八年级数学下册第一章三角形的证明1.4.2角平分线新版北师大版_第4页
八年级数学下册第一章三角形的证明1.4.2角平分线新版北师大版_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.4角平分线(二)北师大版八年级数学下册第一章三角形的证明编辑ppt习题1.8的第1题作三角形的三个内角的角平分线,你发现了什么?用心想一想,马到功成发现:三角形的三个内角的角平分线交于一点.这一点到三角形三边的距离相等.编辑ppt放开手脚做一做

剪一个三角形纸片,通过折叠找出每个角的角平分线,观察这三条角平分线,你是否发现同样的结论?与同伴交流.DFEMNCBAP编辑ppt用心想一想,马到功成DEFMNCBAP证明:三角形三条角平分线相交于一点.已知:如图,设△ABC的角平分线.BM、CN相交于点P,求证:P点在∠BAC的角平分线上.证明:过P点作PD⊥AB,PF⊥AC,PE⊥BC,其中D、E、F是垂足∵BM是△ABC的角平分线,点P在BM上∴PD=PE同理:PE=PF.∴PD=PF.∴点P在∠BAC的平分线上∴△ABC的三条角平分线相交于点P.编辑ppt

定理:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.三角形角平分线的性质定理编辑ppt比较三角形三边的垂直平分线和三条角平分线的性质定理三边垂直平分线三条角平分线三角形锐角三角形交于三角形内一点交于三角形内一点钝角三角形交于三角形外一点直角三角形交于斜边的中点交点性质到三角形三个顶点的距离相等到三角形三边的距离相等编辑ppt

如图:直线L1、L2、L3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?开拓创新试一试满足条件共4个P1Pl3l21lCBA编辑ppt[例1]如图,在△ABC中.AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.用心想一想,马到功成DABEC(1)解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AB∴DE=CD=4cm∵AC=BC∴∠B=∠BAC(等边对等角)∵∠C=90°,∴∠B=×90°=45°.∴∠BDE=90°—45°=45°.∴BE=DE(等角对等边).在等腰直角三角形BDE中

(勾股定理),∴AC=BC=CD+BD=(4+)cm.编辑ppt[例1]如图,在△ABC中.AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.用心想一想,马到功成DABEC(2)证明:由(1)的求解过程可知,

Rt△ACD≌Rt△AED(HL)∴AC=AE.∵BE=DE=CD,∴AB=AE+BE=AC+CD.编辑ppt用心想一想,马到功成[例2]已知:如图,P是∠

AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C、D.求证:(1)OC=OD;

(2)OP是CD的垂直平分线.证明:(1)P是∠AOB角平分线上的一点,PC⊥OA,PD⊥OB∴PC=PD在Rt△OPC和Rt△OPD中,OP=OP,PC=PD,∴Rt△OPC≌Rt△OPD(HL).∴OC=OD(全等三角形对应边相等).PDAECOB(2)又OP是∠AOB的角平分线,∴OP是CD的垂直平分线(等腰三角形“三线合一”定理).编辑ppt课堂小结,畅谈收获:

本节课我们利用角平分线的性质和判定定理证明了三角形三条角平分线交于一点,且这一点到三角形各边的距离相等.并综合运用我们前面学过的性质定理等解决了几何中的计算和证明问题.编辑ppt课内拓展延伸

如图,△ABC中,点O是∠BAC与∠ABC的平分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论