版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年辽宁省锦州市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.A.5B.6C.8D.10
2.已知A是锐角,则2A是A.第一象限角B.第二象限角C.第一或第二象限角D.D小于180°的正角
3.A.B.C.D.
4.已知点A(1,-3)B(-1,3),则直线AB的斜率是()A.
B.-3
C.
D.3
5.己知,则这样的集合P有()个数A.3B.2C.4D.5
6.下列函数是奇函数的是A.y=x+3
B.C.D.
7.A.
B.
C.
8.设复数z=1+i(i为虚数单位),则2/z+z2=()A.l+iB.l-iC.-l-iD.-l+i
9.若输入-5,按图中所示程序框图运行后,输出的结果是()A.-5B.0C.-1D.1
10.设集合M={1,2,4,5,6},集合N={2,4,6},则M∩N=()A.{2,4,5,6}B.{4,5,6}C.{1,2,3,4,5,6}D.{2,4,6}
11.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7
12.下列表示同一函数的是()A.f(x)=x2/x+1与f(x)=x—1
B.f(x)=x0(x≠0)与f(x)=1
C.
D.f(x)=2x+l与f(t)=2t+1
13.A.3
B.8
C.
14.A≠ф是A∩B=ф的()A.充分条件B.必要条件C.充要条件D.无法确定
15.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11
16.己知向量a
=(2,1),b
=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对
17.正方体棱长为3,面对角线长为()A.
B.2
C.3
D.4
18.若将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期后,所得图象对应的函数为()A.y=2sin(2x+π/4)
B.y=2sin(2x+π/3)
C.3;=2sin(2x-π/4)
D.3;=2sin(2x-π/3)
19.执行如图所示的程序,若输人的实数x=4,则输出结果为()A.4B.3C.2D.1/4
20.如图,在长方体ABCD—A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A—BB1D1D的体积为()cm3.A.5B.6C.7D.8
二、填空题(10题)21.
22.不等式|x-3|<1的解集是
。
23.已知α为第四象限角,若cosα=1/3,则cos(α+π/2)=_______.
24.集合A={1,2,3}的子集的个数是
。
25.
26.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,一2),则圆C的方程为___________.
27.五位同学站成一排,其中甲既不站在排头也不站在排尾的排法有_____种.
28.
29.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.
30.己知三个数成等差数列,他们的和为18,平方和是116,则这三个数从小到大依次是_____.
三、计算题(10题)31.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
32.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
33.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
34.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
35.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
36.解不等式4<|1-3x|<7
37.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
38.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
39.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
40.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
四、简答题(10题)41.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
42.在等差数列中,已知a1,a4是方程x2-10x+16=0的两个根,且a4>a1,求S8的值
43.化简
44.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。
45.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值
46.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
47.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。
48.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。
49.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.
50.证明:函数是奇函数
五、解答题(10题)51.
52.已知函数f(x)=x2-2ax+a,(1)当a=2时,求函数f(x)在[0,3]上的值域;(2)若a<0,求使函数f(x)=x2-2ax+a的定义域为[―1,1],值域为[一2,2]的a的值.
53.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2,且|F1F2|=2,点(1,3/2)在该椭圆上.(1)求椭圆C的方程;(2)过F1的直线L与椭圆C相交于A,B两点,以F2为圆心为半径的圆与直线L相切,求△AF2B的面积.
54.
55.
56.
57.设函数f(x)=x3-3ax+b(a≠0).(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值;(2)求函数f(x)的单调区间与极值点.
58.已知椭圆的两焦点为F1(-1,0),F2(1,0),P为椭圆上的一点,且2|F1F2|PF1|+|PF2|.(1)求此椭圆的标准方程;(2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.
59.已知数列{an}是公差不为0的等差数列a1=2,且a2,a3,a4+1成等比数列.(1)求数列{an}的通项公式;(2)设bn=2/n(an+2),求数列{bn}的前n项和Sn.
60.已知函数(1)求f(x)的最小正周期及其最大值;(2)求f(x)的单调递增区间.
六、单选题(0题)61.当时,函数的()A.最大值1,最小值-1
B.最大值1,最小值
C.最大值2,最小值-2
D.最大值2,最小值-1
参考答案
1.A
2.D
3.D
4.B
5.C
6.C
7.B
8.A复数的计算.∵Z=1+i,∴2/z+z2=2/1+i(1+i)2===1-i+2i=1+i.
9.D程序框图的运算.因x=-5,不满足>0,所以在第一个判断框中
10.D集合的计算∵M={1,2,3,4,5,6},N={2,4,6},∴M∩N={2,4,6}
11.C分层抽样方法.四类食品的比例为4:1:3:2,则抽取的植物油类的数量为20×1/10=2,抽取的果蔬类的数量为20×2/10=4,二者之和为6,
12.D函数的定义域与对应关系.A、B中定义域不同;C中对应关系不同;D表示同一函数
13.A
14.A
15.C圆与圆相切的性质.圆C1的圆心C1(0,0),半径r1=1,圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆心C2(3,4),
16.C
17.C面对角线的判断.面对角线长为
18.D三角函数图像性质.函数y=2sin(2x+π/6)的周期为π,将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期即π/4个单位,所得函数为y=2sin[2(x-π/4)+π/6]=2sin(2x-π/3)
19.C三角函数的运算∵x=4>1,∴y=㏒24=2
20.B四棱锥的体积公式∵长方体底面ABCD是正方形,∴△ABD中BD=3cm,BD边上的高是3/2cm,∴四棱锥A-BB1DD1的体积为去1/3×3×2×3/2=6
21.
22.
23.
利用诱导公式计算三角函数值.∵α为第四象限角,∴sinα-
24.8
25.-6
26.(x-2)2+(y+3)2=5圆的方程.圆心在AB中垂线y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圆C的方程为(x-2)2+(y+3)2=5
27.72,
28.π/3
29.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。
30.4、6、8
31.
32.
33.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
34.
35.
36.
37.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
38.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
39.
40.
41.
42.方程的两个根为2和8,又∴又∵a4=a1+3d,∴d=2∵。
43.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
44.
45.
46.由已知得:由上可解得
47.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510
(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510
选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897
48.
49.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴数列为首项b1=32,q=16的等比数列
50.证明:∵∴则,此函数为奇函数
51.
52.
53.
以F2为圆心为半径的圆的方程为(x-l)22+y2=2①当直线l⊥x轴时,与圆不相切,不符合题意.②当直线l与x不垂直时,设直线的方程为y=k(x+1),由圆心到直线的距离等
54.
55.
56.
57.(1)f(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车间设备项目立项报告
- 机械加工项目立项报告
- 周转箱投资规划项目建议书
- 2024年离婚诉讼子女抚养权及赡养费合同样本版B版
- 水务企业成本控制策略-洞察分析
- 油墨产品质量控制研究-洞察分析
- 土地登记与金融风险防范-洞察分析
- 水稻高产栽培技术-洞察分析
- 语言演变与历史研究-洞察分析
- 线上线下融合下的选址策略-洞察分析
- 卫生行政处罚申辩书范文
- 护士长如何做好时间管理
- 康复科进修汇报
- 2023风电机组预应力混凝土塔筒与基础结构设计标准
- 3D打印技术在医疗领域的应用
- 2024年辅警考试公基常识300题(附解析)
- 仓库班长年终总结
- 北京市海淀区2023-2024学年四年级上学期期末英语试题
- LNG液化天然气项目事故后果模拟分析评价
- 2024年湖北省汉江国有资本投资集团有限公司招聘笔试参考题库含答案解析
- 脂肪肝健康教育-课件
评论
0/150
提交评论