高三数学必背知识点_第1页
高三数学必背知识点_第2页
高三数学必背知识点_第3页
高三数学必背知识点_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高三数学必背知识点对于很多高三学生来说,数学无疑也是一个难以攻克的难关,数学总是杂而乱的,学习数学要讲究方法才能在最终考试时看到成效。以下是小编给大家整理的高三数学必背知识点,希望能帮助到大家!高三数学必背知识点1a(1)=a,a(n)为公差为r的等差数列通项公式:a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.可用归纳法证明。n=1时,a(1)=a+(1-1)r=a。成立。假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.通项公式也成立。因此,由归纳法知,等差数列的通项公式是正确的。求和公式:S(n)=a(1)+a(2)+...+a(n)=a+(a+r)+...+[a+(n-1)r]=na+r[1+2+...+(n-1)]=na+n(n-1)r/2同样,可用归纳法证明求和公式。a(1)=a,a(n)为公比为r(r不等于0)的等比数列通项公式:a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).可用归纳法证明等比数列的通项公式。求和公式:S(n)=a(1)+a(2)+...+a(n)=a+ar+...+ar^(n-1)=a[1+r+...+r^(n-1)]S(n)=a[1-r^n]/[1-r]S(n)=na.同样,可用归纳法证明求和公式。高三数学必背知识点21.数列的定义、分类与通项公式(1)数列的定义:①数列:按照一定顺序排列的一列数.②数列的项:数列中的每一个数.(2)数列的分类:分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列an+1>an其中n∈N_an1an=an(3)数列的通项公式:如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.3.对数列概念的理解(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.4.数列的函数特征函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N_).高三数学必背知识点31.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。3.两个平面平行的主要性质:(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论