下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州市九渡中学2023年高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知定义在R上的奇函数满足,当时,,(
)
A.
B.
C.
D.参考答案:B略2.已知正项等比数列{an},且a2a10=2a52,a3=1,则a4=()A. B. C. D.2参考答案:C【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】由已知条件利用等比数列的通项公式列出方程组,求出首项和公比,由此能求出a4的值.【解答】解:∵正项等比数列{an},且a2a10=2a52,a3=1,∴,且q>0,解得,q=,a4==.故选:C.【点评】本题考查等比数列的第4项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.3.椭圆6x2+y2=6的长轴端点坐标为()A.(﹣1,0),(1,0) B.(﹣6,0),(6,0) C. D.参考答案:D【考点】椭圆的简单性质.【分析】化简椭圆方程为标准方程,然后求解即可.【解答】解:椭圆6x2+y2=6的标准方程为:,椭圆6x2+y2=6的长轴端点坐标为:.故选:D.4.已知F1、F2分别是双曲线﹣=1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为()A. B. C. D.2参考答案:A【考点】双曲线的简单性质.【分析】先设F1F2=2c,由题意知△F1F2P是直角三角形,进而在RT△PF1F2中结合双曲线的定义和△PF1F2的面积,进而根据双曲线的简单性质求得a,c之间的关系,则双曲线的离心率可得.【解答】解:设F1F2=2c,由题意知△F1F2P是直角三角形,∴F1P2+F2P2=F1F22,又根据曲线的定义得:F1P﹣F2P=2a,平方得:F1P2+F2P2﹣2F1P×F2P=4a2从而得出F1F22﹣2F1P×F2P=4a2∴F1P×F2P=2(c2﹣a2)又当△PF1F2的面积等于a2即F1P×F2P=a22(c2﹣a2)=a2∴c=a,∴双曲线的离心率e==.故选A.5.设集合,则A∩B的元素的个数为(
)A.3
B.4
C.5
D.6参考答案:C6.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第1小组的频数为6,则报考飞行员的学生人数是A.36
B.40
C.48
D.50参考答案:C7.已知函数,则的值为(
)
A.
B.
C.
D.参考答案:D8.若对于任意的x>0,不等式≤a恒成立,则实数a的取值范围为()A.a≥ B.a> C.a< D.a≤参考答案:A【考点】基本不等式.【分析】由x>0,不等式=,运用基本不等式可得最大值,由恒成立思想可得a的范围.【解答】解:由x>0,=,令t=x+,则t≥2=2当且仅当x=1时,t取得最小值2.取得最大值,所以对于任意的x>0,不等式≤a恒成立,则a≥,故选:A.【点评】本题考查函数的恒成立问题的解法,注意运用基本不等式求得最值,考查运算能力,属于中档题.9.在中,,则(
) A. B. C. D.参考答案:B略10.已知函数f(x)=ax3+bx2+cx+d的图象如图所示,则的取值范围是()A.(﹣,) B.(﹣,) C.(﹣,) D.(﹣,)参考答案:A【考点】6B:利用导数研究函数的单调性.【分析】由图象可知:经过原点,可得f(0)=0=d,即f(x)=ax3+bx2+cx..由图象可得:函数f(x)在上单调递减,函数f(x)在x=﹣1处取得极大值.可得f′(x)≤0在上恒成立,且f′(﹣1)=0.利用且f′(1)<0,f′(2)>0即可得到b<0,3a+2b>0,设k=,则k=,求k的最值,进而得出结论.【解答】解:由图象可知:经过原点,∴f(0)=0=d,∴f(x)=ax3+bx2+cx.由图象可得:函数f(x)在上单调递减,函数f(x)在x=﹣1处取得极大值.∴f′(x)=3ax2+2bx+c≤0在上恒成立,且f′(﹣1)=0.得到3a﹣2b+c=0,即c=2b﹣3a,∵f′(1)=3a+2b+c<0,∴4b<0,即b<0,∵f′(2)=12a+4b+c>0,∴3a+2b>0,设k=,则k=,建立如图所示的坐标系,则点A(﹣1,﹣2),则k=式中变量a、b满足下列条件,作出可行域如图:∴k的最大值就是kAB=,k的最小值就是kCD,而kCD就是直线3a+2b=0的斜率,kCD=﹣,∴.∴故选A.二、填空题:本大题共7小题,每小题4分,共28分11.命题“”的否定为
.参考答案:,特称命题“”的否定是全称命题“”。12.已知函数满足,且的导函数,则的解集是
.参考答案:略13.如果复数(为虚数单位,)为纯虚数,则所对应的点关于直线的对称点为
.参考答案:14.设曲线在点处的切线与x轴交点的横坐标为,令,则的值为__________。参考答案:略15.若执行如下图所示的框图,输入x1=1,x2=2,x3=4,x4=8,则输出的数等于________.参考答案:16.已知函数,如果,则m的取值范围是______________.参考答案:(1,根号2)略17.设是首项为1的正项数列,且(n=1,2,3…),求通项=_________________。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在等腰梯形ABCD中,,,,,梯形ABCD的高为,E是CD的中点,分别以C,D为圆心,CE,CE为半径作两条圆弧,交AB于F,G两点.(1)求的度数;(2)设图中阴影部分为区域,求区域的面积.参考答案:(1)(2)【分析】(1)设梯形的高为,求得,在中,由正弦定理求得,即可得到.(2)由(1),在中,由余弦定理,列出方程,解得,利用面积公式,即可求解.【详解】(1)设梯形的高为,因为,所以.在中,由正弦定理,得,即,解得又,且,所以.(2)由(1)得.在中,由余弦定理推论,得,即,解得(舍去).因为,所以.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.19.如图,四棱柱ABCD﹣A1B1C1D1中,侧面AA1D1D为矩形,AB⊥平面AA1D1D,CD⊥平面AA1D1D,E、F分别为A1B1、CC1的中点,且AA1=CD=2,AB=AD=1.(1)求证:EF∥平面A1BC;(2)求D1到平面A1BC1的距离.参考答案:【考点】点、线、面间的距离计算;直线与平面平行的判定.【专题】综合题;转化思想;综合法;空间位置关系与距离.【分析】(1)取A1B的中点O,连接OE,OC,证明四边形OECF是平行四边形,可得EF∥OC,即可证明EF∥平面A1BC;(2)利用等体积法求D1到平面A1BC1的距离.【解答】(1)证明:取A1B的中点O,连接OE,OC,则OE平行且等于BB1,∵F为CC1的中点,∴CF平行且等于CC1,∴OE平行且等于CF,∴四边形OECF是平行四边形,∴EF∥OC,∵EF?平面A1BC,OC?平面A1BC,∴EF∥平面A1BC;(2)解:△A1BC1中,A1B=A1C1=,BC1=,∴面积为=.设D1到平面A1BC1的距离为h,则×h=∴h=.即D1到平面A1BC1的距离为.【点评】本题考查线面平行的判断,考查点到平面的距离,正确求体积是关键.20.用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.参考答案:【考点】WH:大数分解.【分析】把所给的函数式变化成都是一次式的形式,逐一求出从里到外的函数值的值,最后得到当xx=3时的函数值.【解答】解:f(x)=((7x+6)x+5)x+4)x+3)x+2)x+1)xV0=7,V1=7×3+6=27,V2=27×3+5=86,V3=86×3+4=262,V4=262×3+3=789,V5=789×3+2=2369,V6=2369×3+1=7108,V7=7108×3+0=21324,∴f(3)=21324即当x=3时,函数值是21324.21.(12分)如图①,正三角形边长2,为边上的高,、分别为、中点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年亚光格栅灯项目可行性研究报告
- 2024至2030年中国固定洗脸盆螺栓行业投资前景及策略咨询研究报告
- 2024至2030年中国古董窗花数据监测研究报告
- 飞翔的小鸟课程设计java
- 高中物理活动课程设计
- 中国雾化片市场深度调查与投资策略分析研究报告(2024-2030版)
- 中国铜包钢接地棒行业营销策略与投资风险分析研究报告(2024-2030版)
- 中国金属丝绳制造行业经营状况及未来需求预测研究报告(2024-2030版)
- 中国自耦变压器行业运行动态及应用前景预测研究报告(2024-2030版)
- 2024年中国暖汤煲市场调查研究报告
- 个人申报国家社科基金的过程与体会
- QtC++程序设计-教学大纲
- 《企业普法讲座》课件
- 引领学生了解物理科学的前沿与进展
- 2024年国家能源集团公司招聘笔试参考题库含答案解析
- 污泥( 废水)运输服务方案(技术方案)
- 如何搞定你的客户-
- 八年级物理上册说课稿:第二章2.1物质的三态 温度的测量
- 职业院校面试题目及答案
- 湖北省鄂东南省级示范高中教育教学改革联盟2023-2024学年高一上学期期中联考政治试题
- 海水淡化处理方案
评论
0/150
提交评论