下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市万载第一职业技术高级中学2022-2023学年高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若,则下列不等式成立的是(
)A-.
B.
C.
D.参考答案:C试题分析:考点:不等式性质2.对于任意的正实数x,y都有(2x)ln成立,则实数m的取值范围为A. B. C. D.参考答案:D由,可得,设,则可设,则,所以,所以单调递减,又,所以在单调递增,在上单调递减,所以,所以,所以,故选D.点睛:本题主要考查了不等式的恒成立问题的求解,其中解答中涉及利用导数求解函数的单调性,利用导数研究函数的极值与最值等知识点的综合应用,解答中通过分离参数,构造新函数,利用函数的单调性和最值是解答的关键,着重考查了学生分析问题和解答问题的能力,试题有一定的难度,属于难题.
3.设复数z满足,z在复平面内对应的点为(x,y),则A. B. C. D.参考答案:C【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.【详解】则.故选C.【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.4.椭圆的左、右顶点分别为,点在上且直线的斜率的取值范围是,那么直线斜率的取值范围是A. B. C. D.参考答案:B5.“点P在直线m上,m在平面α内”可表示为()A.P∈m,mαB.P∈m,m∈α
C.Pm,m∈α
D.Pm,mα参考答案:A6.已知随机变量X满足D(X)=2,则D(3X+2)=()A.2
B.6C.18
D.20参考答案:C7.在长方体ABCD-ABCD中,如果AB=BC=1,AA=2,那么A到直线AC的距离为
(
)(A)
(B)
(C)
(D)参考答案:C8.已知等比数列的前项和为,且满足,则公比= ()A.
B.
C.
D.2参考答案:C9.(5分)过双曲线的左焦点F(﹣c,0)(c>0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P.若,则双曲线的离心率为() A. B. C. D. 参考答案:B10.对于R上可导的任意函数,若满足,则必有
(
)A.
B. C. D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知定义在上的函数满足,且的导函数,则不等式的解集为
.参考答案:12.1已知射手甲射击一次,命中9环以上(含9环)的概率为0.5,命中8环的概率为0.2,命中7环的概率为0.1,则甲射击一次,命中6环以下(含6环)的概率为
.参考答案:0.213.点P是椭圆+=1上一点,F1,F2分别是椭圆的左、右焦点,若|PF1||PF2|=12,则∠F1PF2的大小.参考答案:60°【考点】椭圆的简单性质.【分析】利用椭圆的定义,结合余弦定理,已知条件,转化求解即可.【解答】解:椭圆+=1,可得2a=8,设|PF1|=m,|PF2|=n,可得,化简可得:cos∠F1PF2=∴∠F1PF2=60°故答案为:60°.14.参考答案:[0,]15.如图是某校高二年级举办的歌咏比赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为
.参考答案:3.2【考点】极差、方差与标准差.【专题】对应思想;数学模型法;概率与统计.【分析】去掉一个最高分和一个最低分后,确定所剩数据,从而可求数据的平均数和方差.【解答】解:去掉一个最高分和一个最低分后,所剩数据为83,84,84,86,88,平均数为(83+84+84+86+88)=85,方差为(4+1+1+1+9)=3.2,故答案为:3.2.【点评】本题考查了茎叶图的读法,属于基础题.正确理解茎叶图和准确的计算,是解决本题的关键.16.已知,则
参考答案:17.已知an=(n∈N*),设am为数列{an}的最大项,则m=
.参考答案:8【考点】数列的函数特性.【专题】函数的性质及应用;等差数列与等比数列.【分析】把数列an==1+,根据单调性,项的符号判断最大项.【解答】解:∵an=(n∈N*),∴an==1+根据函数的单调性可判断:数列{an}在[1,7],[8,+∞)单调递减,∵在[1,7]上an<1,在[8,+∞)上an>1,∴a8为最大项,故答案为:8【点评】本题考查了数列与函数的结合,根据单调性求解,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.参考答案:【考点】71:不等关系与不等式.【分析】(Ⅰ)由不等式的解集可得ab的方程组,解方程组可得;(Ⅱ)原式=+=+,由柯西不等式可得最大值.【解答】解:(Ⅰ)关于x的不等式|x+a|<b可化为﹣b﹣a<x<b﹣a,又∵原不等式的解集为{x|2<x<4},∴,解方程组可得;(Ⅱ)由(Ⅰ)可得+=+=+≤=2=4,当且仅当=即t=1时取等号,∴所求最大值为419.已知,,,其中.⑴求和的边上的高;⑵若函数的最大值是,求常数的值.参考答案:⑴,因为,所以,因为,是等腰三角形,所以注:运用数形结合解三角形的办法求解也可参(照给分。,,依题意,,,所以,因为,所以,⑵由⑴知,,因为,,所以①
若,则当时,取得最大值,依题意,解得②
②若,因为,所以,与取得最大值矛盾③若,因为,所以,的最大值,与“函数的最大值是”矛盾(或:若,当时,取得最大值,最大值为依题意,与矛盾综上所述,.20.已知函数f(x)=sin2x﹣cos2x﹣,x?R.(1)求函数f(x)的最小正周期,最大值,最小值;(2)求函数f(x)的单调递增区间.参考答案:【考点】两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.【专题】计算题;函数思想;三角函数的图像与性质.【分析】(1)利用两角和与差的三角函数化简函数的表达式,然后求解周期以及最值.(2)利用正弦函数的单调区间求解函数的单调区间即可.【解答】解:(1)函数f(x)=sin2x﹣cos2x﹣=sin2x﹣cos2x﹣1=sin(2x﹣)﹣1,函数的周期为:T=,最大值为:0,最小值为﹣2.(2)由2kπ﹣≤2x﹣≤2kπ+,k∈Z,可得kπ﹣≤x≤kπ+,k∈Z,函数f(x)的单调递增区间:,k∈Z.【点评】本题考查两角和与差的三角函数,正弦函数的单调性以及三角函数的最值的求法,考查计算能力.21.已知函数f(x)=│x+1│–│x–2│.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2–x+m的解集非空,求实数m的取值范围.参考答案:(1);(2).【分析】(1)由于f(x)=|x+1|﹣|x﹣2|,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max,从而可得m的取值范围.【详解】解:(1)∵f(x)=|x+1|﹣|x﹣2|,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x),当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x1,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x∈(﹣1,2),∴g(x)≤g()1;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x2,∴g(x)≤g(2)=﹣4+2+3=1;综上,g(x)max,∴m的取值范围为(﹣∞,].【点睛】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题.22.一家公司计划生产某种小型产品的月固定成本为1万元,每生产1万件需要再投入2万元.设该公司一个月内生产该小型产品万件并全部销售完,每万件的销售收入为万元,且每万件国家给予补助万元.(为自然对数的底数,是一个常数.)(Ⅰ)写出月利润(万元)关于月产量(万件)的函数解析式;(Ⅱ)当月生产量在万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件).(注:月利润=月销售收入+月国家补助-月总成本).参考答案:(Ⅰ);(Ⅱ)月生产量在万件时,该公司在生产这种小型产品中所获得的月利润最大值为,此时的月生产量值为(万件)【分析】试题分析:(Ⅰ)根据题设条件:月利润=月销售收入+月国家补助-月总成本,可得利润(万元)关于月产量(万件)的函数解析式;(Ⅱ)先求函数的导数,再利用导数的符号判断函数在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度厂房拆迁补偿与区域经济一体化合作协议2篇
- 2024年中国风鹅颈市场调查研究报告
- 福建医科大学《工厂设计》2023-2024学年第一学期期末试卷
- 福建信息职业技术学院《教育统计与应用》2023-2024学年第一学期期末试卷
- 2024年租赁服务招标合同条款3篇
- 2024年中国铝盖玻璃杯市场调查研究报告
- 2025年度海盐二手房交易诚信体系建设合同2篇
- 2024年药师证租赁与药品市场推广合同范本3篇
- 中西医结合盆腔炎病(盆腔炎)优势病种诊疗方案
- 2024年虚拟现实内容制作与版权交易合同
- 2024年地理知识竞赛试题200题及答案
- 肝衰竭诊治指南(2024年版)解读
- 化学反应工程智慧树知到期末考试答案章节答案2024年浙江工业大学
- 人生悟理-透过物理看人生智慧树知到期末考试答案2024年
- 儿童剧剧本三只小猪
- 赢在执行力:团队执行力-下
- 钻孔灌注桩后注浆施工方案(最全版)
- 政工干部年度述职报告
- 1000MW电厂水处理DCS控制系统设计
- 硬件设计checklist
- 《职业健康培训》
评论
0/150
提交评论