高中数学知识点总结2021-转自DOCX_第1页
高中数学知识点总结2021-转自DOCX_第2页
高中数学知识点总结2021-转自DOCX_第3页
高中数学知识点总结2021-转自DOCX_第4页
高中数学知识点总结2021-转自DOCX_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学知识点总结2021学习知识容易,转化成为能力很难;提出问题容易,得到圆满答复很难;点评别人容易,身临其境去做很难;指责同事容易,正确评价自己很难。下面小编给大家分享一些高中数学知识点总结,希望能够帮助大家,欢迎阅读!高中数学知识点总结11、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:它是判定两个平面相交的方法.它说明两个平面的交线与两个平面公共点之间的关系:交线公共点.它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行高中数学知识点总结2一、变量间的相关关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.二、两个变量的线性相关1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.三、解题方法1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.3.由相关系数r判断时|r|越趋近于1相关性越强.高中数学知识点总结3函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)平移变换y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。对称变换y=f(x)→y=f(-x),关于y轴对称y=f(x)→y=-f(x),关于x轴对称y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)伸缩变换:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;高中数学知识点总结4在中国古代把数学叫算术,又称算学,最后才改为数学。1.任意角(1)角的分类:①按旋转方向不同分为正角、负角、零角.②按终边位置不同分为象限角和轴线角.(2)终边相同的角:终边与角相同的角可写成+k360(kZ).(3)弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径.③用弧度做单位来度量角的制度叫做弧度制.比值与所取的r的大小无关,仅与角的大小有关.④弧度与角度的换算:360弧度;180弧度.⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2.2.任意角的三角函数(1)任意角的三角函数定义:设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.3.三角函数线设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan=AT.我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线.高中数学知识点总结51.求函数的单调性:利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。2.求函数的极值:设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。可导函数的极值,可通过研究函数的单调性求得,基本步骤是:(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:(4)检查f(x)的符号并由表格判断极值。3.求函数的值与最小值:如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。4.解决不等式的有关问题:(1)不等式恒成立问题(绝对不等式问题)可考虑值域。f(x)(xA)的值域是[a,b]时,不等式f(x)0恒成立的充要条件是f(x)max0,即b0;不等式f(x)0恒成立的充要条件是f(x)min0,即a0。f(x)(xA)的值域是(a,b)时,不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。5.导数在实际生活中的应用:实

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论