版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
梯形一、选择题1.(2023•广西贺州,第9题3分)如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为()A.12B.15C.12D.15考点:等腰梯形的性质.分析:过点A作AE∥CD,交BC于点E,可得出四边形ADCE是平行四边形,再根据等腰梯形的性质及平行线的性质得出∠AEB=∠BCD=60°,由三角形外角的定义求出∠EAC的度数,故可得出四边形ADEC是菱形,再由等边三角形的鉴定定理得出△ABE是等边三角形,由此可得出结论.解答:解:过点A作AE∥CD,交BC于点E,∵梯形ABCD是等腰梯形,∠B=60°,∴AD∥BC,∴四边形ADCE是平行四边形,∴∠AEB=∠BCD=60°,∵CA平分∠BCD,∴∠ACE=∠BCD=30°,∵∠AEB是△ACE的外角,∴∠AEB=∠ACE+∠EAC,即60°=30°+∠EAC,∴∠EAC=30°,∴AE=CE=3,∴四边形ADEC是菱形,∵△ABE中,∠B=∠AEB=60°,∴△ABE是等边三角形,∴AB=BE=AE=3,∴梯形ABCD的周长=AB+(BE+CE)+CD+AD=3+3+3+3+3=15.故选D.点评:本题考察的是等腰梯形的性质,根据题意作出辅助线,构造出平行四边形是解答此题的关键.2.(2023•襄阳,第10题3分)如图,梯形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于()A.80°B.90°C.100°D.110°考点:梯形;等腰三角形的性质;平行四边形的鉴定与性质.分析:根据等边对等角可得∠DEC=80°,再根据平行线的性质可得∠B=∠DEC=80°,∠A=180°﹣80°=100°.解答:解:∵DE=DC,∠C=80°,∴∠DEC=80°,∵AB∥DE,∴∠B=∠DEC=80°,∵AD∥BC,∴∠A=180°﹣80°=100°,故选:C.点评:此题重要考察了等腰三角形的性质,以及平行线的性质,关键是掌握两直线平行,同位角相等,同旁内角互补.3.(2023·台湾,第3题3分)如图,梯形ABCD中,AD∥BC,E点在BC上,且AE⊥BC.若AB=10,BE=8,DE=6,则AD的长度为什么?()A.8ﻩB.9 C.6EQ\r(,2)ﻩD.6EQ\r(,3)分析:运用勾股定理列式求出AE,再根据两直线平行,内错角相等可得∠DAE=90°,然后运用勾股定理列式计算即可得解.解:∵AE⊥BC,∴∠AEB=90°,∵AB=10,BE=8,∴AE=EQ\r(,AB2-BE2)=EQ\r(,102-82)=6,∵AD∥BC,∴∠DAE=∠AEB=90°,∴AD=EQ\r(,DE2-AE2)=EQ\r(,(6EQ\r(,3))2-62)=6EQ\r(,2).故选C.点评:本题考察了梯形,勾股定理,是基础题,熟记定理并拟定出所求的边所在的直角三角形是解题的关键.4.(2023•浙江宁波,第8题4分)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A.2:3B.2:5C.4:9D.:考点:相似三角形的鉴定与性质.分析:先求出△CBA∽△ACD,求出=,COS∠ACB•COS∠DAC=,得出△ABC与△DCA的面积比=.解答:解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD==,AB=2,DC=3,∴===,∴=,∴COS∠ACB==,COS∠DAC==∴•=×=,∴=,∵△ABC与△DCA的面积比=,∴△ABC与△DCA的面积比=,故选:C.点评:本题重要考察了三角形相似的鉴定及性质,解决本题的关键是明确△ABC与△DCA的面积比=.5.(2023•湘潭,第3题,3分)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=(第1题图)A.7.5B.15C.22.5D.30考点:三角形中位线定理分析:根据三角形的中位线得出AB=2DE,代入即可求出答案.解答:解:∵D、E分别是AC、BC的中点,DE=15米∴AB=2DE=30米故选D.点评:本题考察了三角形的中位线的应用,注意:三角形的中位线平行于第三边,并且等于第三边的一半.6.(2023•德州,第7题3分)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A.4米B.6米C.12米D.24米考点:解直角三角形的应用-坡度坡角问题.分析:先根据坡度的定义得出BC的长,进而运用勾股定理得出AB的长.解答:解:在Rt△ABC中,∵=i=,AC=12米,∴BC=6米,根据勾股定理得:AB==6米,故选B.点评:此题考察了解直角三角形的应用﹣坡度坡角问题,勾股定理,难度适中.根据坡度的定义求出BC的长是解题的关键.二.填空题1.(2023•广西玉林市、防城港市,第17题3分)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,则梯形ABCD的周长是7+.考点:直角梯形.分析:根据题意得出AB=AD,进而得出BD的长,再运用在直角三角形中30°所对的边等于斜边的一半,进而求出CD以及运用勾股定理求出BC的长,即可得出梯形ABCD的周长.解答:解:过点A作AE⊥BD于点E,∵AD∥BC,∠A=120°,∴∠ABC=60°,∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABE=∠ADE=30°,∴AB=AD,∴AE=AD=1,∴DE=,则BD=2,∵∠C=90°,∠DBC=30°,∴DC=BD=,∴BC===3,∴梯形ABCD的周长是:AB+AD+CD+BC=2+2++3=7+.故答案为:7+.点评:此题重要考察了直角梯形的性质以及勾股定理和直角三角形中30°所对的边等于斜边的一半等知识,得出∠DBC的度数是解题关键.2.(2023•扬州,第13题,3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1=67.5°.(第1题图)考点:等腰梯形的性质;多边形内角与外角分析:一方面求得正八边形的内角的度数,则∠1的度数是正八边形的度数的一半.解答:解:正八边形的内角和是:(8﹣2)×180°=1080°,则正八边形的内角是:1080÷8=135°,则∠1=×135°=67.5°.故答案是:67.5°.点评:本题考察了正多边形的内角和的计算,对的求得正八边形的内角的度数是关键.3.(2023•扬州,第14题,3分)如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为40cm3.(第2题图)考点:翻折变换(折叠问题);三角形中位线定理分析:根据对称轴垂直平分相应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.解答:解:∵DE是△ABC的中位线,∴DE∥BC,BC=2DE=10cm;由折叠的性质可得:AF⊥DE,∴AF⊥BC,∴S△ABC=BC×AF=×10×8=40cm2.故答案为:40.点评:本题考察了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.三.解答题1.(2023年江苏南京,第19题)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?(第1题图)考点:三角形的中位线、菱形的鉴定分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解答:当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人装修贷款担保合同参考4篇
- 2025年智能手表与手机联销合同3篇
- 2025年度个人购买精装修别墅及物业服务合同3篇
- 2025年度新型建筑材料供应及场地租赁合同4篇
- 二零二五年度房地产开发商项目融资担保合同4篇
- 二零二五版媒体公司兼职会计广告收入审计合同3篇
- 二零二五年度园林景观项目苗木供应合同4篇
- 漳州卫生职业学院《材料加工工艺和设备》2023-2024学年第一学期期末试卷
- 漳州城市职业学院《通信原理》2023-2024学年第一学期期末试卷
- 运城幼儿师范高等专科学校《智能优化与信息处理综合实践》2023-2024学年第一学期期末试卷
- 建筑公司年度工作总结及计划(6篇)
- 2023年昆明贵金属研究所招聘笔试模拟试题及答案解析
- 硫酸装置试生产方案
- 国家重点专科临床护理专业评选标准
- DB11T 1944-2021 市政基础设施工程暗挖施工安全技术规程
- 中国农业核心期刊要目概览
- 好听简单的钢琴谱
- 技术咨询合同书(浙江省科学技术厅监制)
- 《中外资产评估准则》课件第5章 美国评估准则
- 《轴系结构设计》ppt课件
- 应用化学专业英语unit.ppt
评论
0/150
提交评论