版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
时间序列分析终稿第一页,共一百五十九页,2022年,8月28日专题一:时间序列的平稳性及检验
一、问题的引出:非平稳变量与经典回归模型二、平稳和非平稳时间序列三、时间序列的平稳性检验第二页,共一百五十九页,2022年,8月28日一、问题的引出:非平稳变量与经典回归模型
第三页,共一百五十九页,2022年,8月28日⒈常见的数据类型到目前为止,经典计量经济模型常用到的数据有:时间序列数据(time-seriesdata)截面数据(cross-sectionaldata)平行/面板数据(paneldata/time-seriescross-sectiondata)★时间序列数据是最常见,也是最常用到的数据第四页,共一百五十九页,2022年,8月28日⒉经典回归模型与数据的平稳性
经典回归分析暗含着一个重要假设:数据是平稳的。第五页,共一百五十九页,2022年,8月28日
表现在:两个本来没有任何因果关系的变量,却有很高的相关性(有较高的R2)。例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。如用中国的劳动力时间序列与美国GDP时间序列做回归,会得到较高的可决系数,但这往往是虚假回归。⒊数据非平稳,往往导致出现“虚假回归”问题第六页,共一百五十九页,2022年,8月28日在现实经济生活中,实际的时间序列数据往往是非平稳的,而且主要的经济变量如消费、收入、价格往往表现为一致的上升或下降。这样,仍然通过经典的因果关系模型进行分析,一般不会得到有意义的结果。第七页,共一百五十九页,2022年,8月28日二、平稳和非平稳的时间序列第八页,共一百五十九页,2022年,8月28日
所谓时间序列平稳性,是指时间序列的统计规律不随时间的推移而发生变化。也就是说,生成变量时间序列数据的随机过程的特征不随时间变化而变化。这样,以平稳时间序列数据作为计量经济模型时的观测值,其估计方法、检验过程则可能采用前面几章所介绍的技术。直观上,一个平稳的时间序列可以看做是一条围绕其均值上下波动的曲线。从理论上,有两种意义的平稳性,一是严格平稳,另一是弱平稳。1.平稳时间序列第九页,共一百五十九页,2022年,8月28日解释:弱平稳性
随机过程满足下面三个条件称为弱平稳:(1)均值函数是常数;(2)方差函数是常数;(3)自协方差函数仅是时间间隔s的函数
(与t无关)。即COV(Yt,Yt+s)=E[(Yt-μ)(Yt+s-μ)]=γs,μ为Y的均值。(第三个条件不理解就算了,重点要理解前面2个条件)在下面的讨论中,所说平稳性通常是指弱平稳。第十页,共一百五十九页,2022年,8月28日根据定义,弱平稳时间序列的取值必然围绕一个水平的中心趋势,并以相同的发散程度分布。根据这一点,可以从数据分布图形直接对数据是否平稳进行判断。大多数计量分析软件(如Eviews)都有非常完善、方便的数据图形功能,根据图形进行检验非常方便。第十一页,共一百五十九页,2022年,8月28日下图是平稳序列的
第十二页,共一百五十九页,2022年,8月28日
在经济领域中,我们所得到的许多时间序列观测值大多数都不是由平稳过程产生的。例如,国内生产总值GDP大多数情况下随时间的位移而持续增长;货币供给量M2在正常状态下会随时间的位移而扩大。非平稳的时间序列的形式较为复杂,但是不管是怎样的非平稳序列都是由下面三种基本形式构成(随机游走序列、带漂移项的随机游走序列和带趋势项的随机游走序列),故主要考察三种基本的非平稳模式。如果经过检验可知某个时间序列包含了这三种基本形式之一,则该序列就是非平稳序列。2.非平稳时间序列第十三页,共一百五十九页,2022年,8月28日下图是非平稳序列的,
第十四页,共一百五十九页,2022年,8月28日介绍三种有用的非平稳时间序列模式:(1)(纯)随机游走序列(2)带漂移项的随机游走序列(3)带趋势项的随机游走序列第十五页,共一百五十九页,2022年,8月28日随机游走序列是一个简单的随机过程,yt由下式确定:yt=yt-1+ut……(9.1)式中ut为白噪声序列(解释:心电图模式),yt的均值为:第一、E(yt)=E(yt-1)+E(ut)=E(yt-1),表明yt均值不随时间而变。第二、可以证明yt的方差随时间而增大。
D(yt)=t*σ2
因此,平稳性的第二个条件(方差为常数)不满足。因此随机游走序列是非平稳序列。(1)(纯)随机游走序列第十六页,共一百五十九页,2022年,8月28日可是当将(9.1)写成一阶差分形式:则ut为白噪声序列,因此Δyt是一个平稳序列。第十七页,共一百五十九页,2022年,8月28日我知道啊!就是“心电图序列”。用专家的话说,就是如果随机过程ut满足:(1)E(ut)=0,(2)Var(ut)=σ2,(3)Cov(ut,ut-s)=0,则称其为白噪声序列或白噪声过程,白噪声过程显然是弱平稳随机过程。喂!什么叫“白噪声序列”?第十八页,共一百五十九页,2022年,8月28日其模型形式为:yt=a+yt-1+ut……(9.2)式中a为一非零常数,ut为白噪声序列,a之所以被称为漂移项,是因为式(9.2)的一阶差分:(2)带漂移的随机游走序列表明时间序列yt向上或向下漂移,取决于a是正是负。通过分析可以知道yt是一个具有明显趋势的序列,var(yt)=tσ2,它的方差随时间发散到无穷大,不满足平稳性的第二个条件(方差为常数)。所以是一个非平稳序列。第十九页,共一百五十九页,2022年,8月28日它的形式为:yt=a+βt+yt-1+ut……(9.3)其中t为时间,容易证明该序列是非平稳时间序列。(3)带趋势项的随机游走序列第二十页,共一百五十九页,2022年,8月28日综合以上三种非平稳形式以上三种情况,其数据生成过程都可以综合写成如下形式:
yt=α+γyt-1+ut
(9.4)当α=0,γ=1时,为随机游走序列(9.1);当α=a,γ=1时,为带漂移的随机游走序列(9.2);当α=a+βt,γ=1时,为带趋势项的随机游走序列(9.3).第二十一页,共一百五十九页,2022年,8月28日
由于在实际中遇到的时间序列数据可能只有极少属于平稳序列,而平稳性在计量经济建模中具有重要地位,因此有必要对观测值的时间序列数据进行平稳性检验。平稳性的检验方法主要有:图示法、单位根检验等。但更重要的检验方法是单位根检验。三、时间序列的平稳性检验
第二十二页,共一百五十九页,2022年,8月28日首先画出该时间序列的散点图,然后直观判断散点图是否为一条围绕其平均值上下波动的曲线,如果是的话,则该时间序列是一个平稳时间序列;如果不是的话,则该时间序列是一个非平稳时间序列。这种方法简单直观,易于粗判断,但是精确度不高。1.图示法第二十三页,共一百五十九页,2022年,8月28日对所给的序列进行平稳性检验。要求:掌握平稳性检验的图解法。数据是我国1967-2002年的GDP(Y)数据如下(亿元)。年份Y年份Y年份Y19671773.919794038.2199121617.819681723.119804517.8199226638.119691937.919814862.4199334634.419702252.719825294.7199446759.419712426.419835934.5199558478.119722518.119847171.0199667884.619732720.919858964.4199774462.619742789.9198610202.2199878345.219752997.3198711962.5199982067.519762943.7198814928.3200089442.219773201.9198916909.2200195933.319783624.1199018547.92002104790.6例题1图示法实例分析第二十四页,共一百五十九页,2022年,8月28日第二十五页,共一百五十九页,2022年,8月28日作图步骤:Quick/graph/linegraph第二十六页,共一百五十九页,2022年,8月28日作Yt散点图,得下图,从图形看出,很明显Y是非平稳序列。
第二十七页,共一百五十九页,2022年,8月28日在前面所说的非平稳序列综合模式中yt=α+γyt-1+ut如果α=0,则综合模式可写成:yt=γyt-1+ut我们称为一阶自回归过程,记为AR(1)。可以证明当|γ|<1时,序列yt是平稳序列;当|γ|>=1时,序列yt是非平稳序列。因此,检验yt的平稳性的原假设和备择假设为:H0:|γ|>=1(非平稳);
H1:|γ|<1(平稳)2.单位根检验第二十八页,共一百五十九页,2022年,8月28日如果γ=1,则原假设成立,即序列yt是非平稳序列,那么yt=γyt-1+ut可以被写成:yt=yt-1+ut,这就是前面提到的(纯)随机游走过程。因此,检验序列非平稳性,就是检验γ=1,如果γ=1,我们就称序列存在单位根,也就是序列非平稳。附注:理解什么是单位根第二十九页,共一百五十九页,2022年,8月28日但在实际的检验过程中,我们很少直接用H0:|γ|>=1;H1:|γ|<1来检验序列yt的平稳性。我们往做如下处理:将一阶自回归yt=γyt-1+ut两端都减去yt-1,得到yt-yt-1=γyt-1-yt-1+ut也就是Δyt=γyt-1-yt-1+ut=(γ-1)yt-1+ut=δyt-1+ut
因此,H0:|γ|>=1;H1:|γ|<1可以被写成如下等价形式:H0:δ>=0;H1:δ<0原假设和备择假设的等价转化第三十页,共一百五十九页,2022年,8月28日单位根检验之DF检验法(1)确定工具模型:Δyt=(γ-1)yt-1+ut=δyt-1+ut如果δ=0,也就是γ=1,那么我们说序列yt存在单位根,即序列非平稳。(2)用OLS法估计上面的工具模型。(3)eviews输出估计结果后,就得到系数δ的估计值,同时也会显示系数δ的估计量的t统计量。但接下来不能将这个t统计量和查表得到的t临界值比较了,而是要和一个新的τ临界值(又叫DF分布临界值)比较。第三十一页,共一百五十九页,2022年,8月28日0τ分布图示(左尾单侧检验)aτ临界值拒绝域接受域DF检验法:迪克(Dikey)和福勒(Fuller)检验法第三十二页,共一百五十九页,2022年,8月28日附注:τ临界值(DF分布临界值)表重点:此时的检验是左尾单侧检验,也就是说拒绝域在左尾,如果eviews输出的t统计量(即利用样本信息得到的t统计量)小于相应显著性水平下的τ临界值(比较时双方都不用加绝对值号),我们就要拒绝原假设,接受序列平稳的备择假设;反之,就要接受序列非平稳的原接受。第三十三页,共一百五十九页,2022年,8月28日DF检验法所用的工具模型Δyt=δyt-1+utΔyt=α+δyt-1+utΔyt=α+βt+δyt-1+ut
我们已经分析过第一个工具模型,第二个工具模型加上了截距项α,第三个工具模型加上了截距项α和代表时间趋势项的βt。尽管这三个工具模型的表达形式各有不同,但有关yt平稳性的检验最终依赖的都是系数δ,而与α、β无关。第三十四页,共一百五十九页,2022年,8月28日对所给的序列进行平稳性检验。要求:掌握平稳性检验DF法。数据是我国1967-2002年的GDP(Y)数据如下(亿元)。年份Y年份Y年份Y19671773.919794038.2199121617.819681723.119804517.8199226638.119691937.919814862.4199334634.419702252.719825294.7199446759.419712426.419835934.5199558478.119722518.119847171.0199667884.619732720.919858964.4199774462.619742789.9198610202.2199878345.219752997.3198711962.5199982067.519762943.7198814928.3200089442.219773201.9198916909.2200195933.319783624.1199018547.92002104790.6例题1DF检验实例分析第三十五页,共一百五十九页,2022年,8月28日(1)利用工具模型Δyt=δyt-1+ut对yt进行DF检验
(先要生成新序列Δyt,再对Δyt和yt-1回归)第三十六页,共一百五十九页,2022年,8月28日Workfile中显示的新生成序列第三十七页,共一百五十九页,2022年,8月28日DY与Y(-1)回归第三十八页,共一百五十九页,2022年,8月28日利用工具模型Δyt=δyt-1+ut的回归结果第三十九页,共一百五十九页,2022年,8月28日根据工具模型回归结果判断yt的平稳性
DF检验是左尾单侧检验,也就是说拒绝域在左尾。
eviews输出的检验δ显著性的t统计量9.073632大于相应显著性0.01、0.05、0.1水平下的τ临界值(这些临界值都是负数)。因此,要接受序列非平稳的原接受。第四十页,共一百五十九页,2022年,8月28日(2)利用工具模型Δyt=α+δyt-1+ut,对yt进行DF检验
第四十一页,共一百五十九页,2022年,8月28日利用工具模型Δyt=α+δyt-1+ut的回归结果第四十二页,共一百五十九页,2022年,8月28日根据工具模型回归结果判断yt的平稳性
DF检验是左尾单侧检验,也就是说拒绝域在左尾。
eviews输出的检验δ显著性的t统计量6.263337大于相应显著性0.01、0.05、0.1水平下的τ临界值(这些临界值都是负数)。因此,要接受序列非平稳的原接受。第四十三页,共一百五十九页,2022年,8月28日(3)利用工具模型Δyt=α+β*t+δyt-1+ut,对yt进行DF检验
第四十四页,共一百五十九页,2022年,8月28日利用工具模型Δyt=α+β*t+δyt-1+ut的回归结果第四十五页,共一百五十九页,2022年,8月28日根据工具模型回归结果判断yt的平稳性
DF检验是左尾单侧检验,也就是说拒绝域在左尾。
eviews输出的检验δ显著性的t统计量1.140745大于相应显著性0.01、0.05、0.1水平下的τ临界值(这些临界值都是负数)。因此,要接受序列非平稳的原接受。第四十六页,共一百五十九页,2022年,8月28日
你知道那个模型好吗?从上面三个模型的结果看出,模型Δyt=δ*yt-1+ut较好,因为它输出的检验δ显著性的t统计量为9.073632,是最大的。因此,更显著地接受yt非平稳性的原假设(H0:δ>=0)
。但无论是哪一种工具模型,其残差项ut都存在自相关现象,为了克服自相关的问题,所以实践中,更多地应用ADF法来检验,懂吗!第四十七页,共一百五十九页,2022年,8月28日上述DF检验存在的问题是,在检验所设定的模型时,假设随机误差项ut不存在自相关。但大多数的经济数据序列是不能满足此项假设的。当随机误差项ut存在自相关时,进行单位根检验是由扩展的迪克一富勒检验(AugmentedDickey-FullerTest,ADF)来实现。这个检验将DF检验的右边扩展为包含Δyt
的滞后变量项。这时三个工具模型分别为:单位根检验之ADF检验法(AugmentedDickey-FullerTest)第四十八页,共一百五十九页,2022年,8月28日其中p可以取1,2,3或者由实验来确定,一般地选择的准则是:p要充分大,以便消除ut的自相关。但是不能太大,以保持足够大的自由度。)模型3......)模型2......)模型1......111111tpjjtjtttpjjtjtttpjjtjttuyytyuyyyuyyyååå=--=--=--+D+++=D+D++=D+D+=Dldbαldαld第四十九页,共一百五十九页,2022年,8月28日模型3中的t是时间变量,代表了时间序列随时间变化的某种趋势(如果有的话)。模型1与另两模型的差别在于是否包含有常数项和趋势项(即βt项)。关于3个工具模型的补充说明第五十页,共一百五十九页,2022年,8月28日ADF检验原理与DF法类似此时的单位根检验法与DF检验类似。检验的假设都是:H0:>=0(序列非平稳);H1:<0(序列平稳)。第五十一页,共一百五十九页,2022年,8月28日ADF检验时要重点注意的事项重点:ADF检验也是左尾单侧检验,也就是说拒绝域在左尾,如果eviews输出的t统计量(即利用样本信息得到的t统计量)小于相应显著性水平下的τ临界值(比较时双方都不用加绝对值号),我们就要拒绝原假设,接受序列平稳的备择假设;反之,就要接受序列非平稳的原接受。值得注意的是,检验时,三个工具模型都有各自的τ临界值。第五十二页,共一百五十九页,2022年,8月28日2.202.182.172.162.162.162.612.562.542.532.522.522.972.892.862.842.832.833.413.283.223.193.183.182550100250500〉500-2.62-2.60-2.58-2.57-2.57-2.57-3.00-2.93-2.89-2.88-2.87-2.86-3.33-3.22-3.17-3.14-3.13-3.12-3.75-3.58-3.51-3.46-3.44-3.432550100250500〉5002-1.60-1.61-1.61-1.61-1.61-1.61-1.95-1.95-1.95-1.95-1.95-1.95-2.26-2.25-2.24-2.23-2.23-2.23-2.66-2.62-2.60-2.58-2.58-2.582550100250500〉50010.100.050.0250.01样本容量统计量模型表:3个工具模型使用的ADF分布临界值表ststat第五十三页,共一百五十九页,2022年,8月28日2.392.382.382.382.382.382.852.812.792.792.782.783.253.183.143.123.113.113.743.603.533.493.483.462550100250500〉5002.772.752.732.732.722.723.203.143.113.093.083.083.593.423.423.393.383.384.053.873.783.743.723.712550100250500〉500-3.24-3.18-3.15-3.13-3.13-3.12-3.603.50-3.45-3.43-3.42-3.41-3.95-3.80-3.73-3.69-3.68-3.66-4.38-4.15-4.04-3.99-3.98-3.962550100250500〉50030.100.050.0250.01样本容量统计量模型续表:3个工具模型使用的ADF分布临界值表statbt注意:三个模型关于系数σ显著性检验的τ临界值都是负数,如果eviews输出的t值为正数,就会大于任何一个负数。那么,肯定落在接受域里。第五十四页,共一百五十九页,2022年,8月28日序列平稳性检验时遵循的指导思想
(很重要)
我们总是迫不及待地想得到序列平稳的结论,因为序列平稳对我们建立模型有好处。所以3个工具模型中,只要有一个工具模型检验的结果表明序列平稳,我们就马上接受这一结论,不再用另外的工具模型再检验。我们总是无可奈何地接受序列非平稳的事实,因为序列非平稳给我们建立模型会带来麻烦。所以只有当3个工具模型的检验结果都表明序列非平稳,我们才认为序列非平稳。第五十五页,共一百五十九页,2022年,8月28日
实际检验时从模型3开始,然后模型2、模型1。
何时检验拒绝零假设,即原序列不存在单位根,为平稳序列,何时检验停止。否则,就要继续检验,直到检验完模型1为止。
1)只要其中有一个模型的检验结果拒绝了零假设,就可以认为时间序列是平稳的;2)当三个模型的检验结果都不能拒绝零假设时,则认为时间序列是非平稳的。3)检验时,在所运用的工具模型中要选取适当的滞后差分项(滞后的总项数),以使工具模型的残差项不存在自相关。第五十六页,共一百五十九页,2022年,8月28日
Eviews软件直接提供了单位根检验的功能。在主菜单中选择Quick→SeriesStatistics→UnitRootTest(单位根检验),并根据上述模型在对话框中选择带截距和趋势项,并带序列一阶分布滞后项的回归,就可以直接得到检验结果。在检验过程中有一些检验方法需在选择,如下面的AIC和SC第五十七页,共一百五十九页,2022年,8月28日弹出的对话框说明如下:在下拉式菜单中有许多判断滞后期的方法,见右图,常用的有AIC和SC。系统在你确定的最大滞后期范围内自动选取最好的滞后期数。当选择最大滞后为0时,变成DF检验(因为DF检验是没有ΔY的滞后期的。在这里是选择特别设定的最大滞后期,系统输出以此滞后期为标准的结果,不作进一步筛选。第五十八页,共一百五十九页,2022年,8月28日ADF检验的案例分析为了深入分析研究中国城镇居民的生活费支出与可支配收入的具体数量关系,收集了中国城镇居民月人均可支配收入(SR)和生活费支出(ZC)1992年至1998年各月度数据序列(见表10.3)。第五十九页,共一百五十九页,2022年,8月28日表10.3城镇居民月人均生活费支出和可支配收入序列序列月份1992199319941995199619971998
可支配收入
Sr
1151.83265.93273.98370.00438.37521.01643.402159.86196.96318.81385.21561.29721.01778.623124.00200.19236.45308.62396.82482.38537.164124.88199.48248.00320.33405.27492.96545.795127.75200.75261.16327.94410.06499.90567.996134.48208.50273.45338.53415.38508.81555.797145.05218.82278.10361.09434.70516.24570.238138.31209.07277.45356.30418.21509.98564.389144.25223.17292.71371.32442.30538.46576.3610143.86226.51289.36378.72440.81537.09599.4011149.12226.62296.50383.58449.03534.12577.4012139.93210.32277.60427.78449.17511.22606.14第六十页,共一百五十九页,2022年,8月28日续表10.3
生活费支出
Zc
1139.47221.74234.28307.10373.58419.39585.702168.07186.49272.09353.55471.77528.09598.823110.47185.92202.88263.37350.36390.04417.274113.22185.26227.89281.22352.15405.63455.605115.82187.62235.70299.73369.57426.81466.206118.2012.11237.89308.18370.41422.00455.197118.03186.75239.71315.87376.90428.70458.578124.45187.07252.52331.88387.44459.29475.409147.70219.23286.75385.99454.93517.06591.4110135.14212.80270.00355.92403.77463.98494.5711135.20205.22274.37355.11410.10422.96496.6912128.03192.64250.01386.08400.48460.92516.16第六十一页,共一百五十九页,2022年,8月28日原始数据输入第六十二页,共一百五十九页,2022年,8月28日双击workfile中的SR序列第六十三页,共一百五十九页,2022年,8月28日显示SR序列的数据,再在此界面点击view/graph/line,显示sr序列的变化规律第六十四页,共一百五十九页,2022年,8月28日SR序列的变化规律基本判断SR序列非平稳,对SR进一步用ADF进行平稳性检验。第六十五页,共一百五十九页,2022年,8月28日对SR序列运用ADF检验的eviews操作总体过程:先采用工具模型3(带有截距项和时间趋势项)再采用工具模型2(带有截距项)最后采用工具模型1(没有截距项和时间趋势项)第六十六页,共一百五十九页,2022年,8月28日在主菜单中选择Quick→SeriesStatistics→UnitRootTest(单位根检验)。在弹出的对话框中输入待检验的序列SR。第六十七页,共一百五十九页,2022年,8月28日采用模型3进行ADF检验本例是对SR本身的水平值进行ADF检验,而不是对其差分值进行检验,因此,选取原序列level水平选项;采用的是工具模型3(带截距项和时间趋势项),因此要选取“trendandintercept”选项。本例选择最大滞后项数为11,系统会在11范围内自动选择最佳滞后项数。第六十八页,共一百五十九页,2022年,8月28日模型3检验的结果第六十九页,共一百五十九页,2022年,8月28日模型3检验结果的解释ADF检验是左尾单侧检验,也就是说拒绝域在左尾。
eviews输出的检验δ显著性的t统计量为-1.439376大于显著性0.01、0.05、0.1水平下的相应τ临界值(-4.090602、3.473447、-3.163967)。因此,要接受序列SR非平稳的原假设。事实上P值0.8408,代表接受原假设的概率。第七十页,共一百五十九页,2022年,8月28日采用模型2进行ADF检验第七十一页,共一百五十九页,2022年,8月28日采用模型2进行检验的结果同理,要接受序列SR非平稳的原假设。第七十二页,共一百五十九页,2022年,8月28日采用模型1进行ADF检验第七十三页,共一百五十九页,2022年,8月28日采用模型1进行检验的结果同理,要接受序列SR非平稳的原假设。第七十四页,共一百五十九页,2022年,8月28日小结由于3个工具模型都证明了SR序列存在单位根,即该序列属于非平稳序列,因此,最终的结论就是SR序列非平稳。第七十五页,共一百五十九页,2022年,8月28日事实上,从图示法可以看出,ZC也是非平稳的。当然也可以用ADF法检验ZC的平稳性,也会得出ZC非平稳的结论。此处略。第七十六页,共一百五十九页,2022年,8月28日专题二:协整分析与误差修正模型
一、协整分析(最终落脚点协整检验)二、误差修正模型(可省略)第七十七页,共一百五十九页,2022年,8月28日
一、协整分析第七十八页,共一百五十九页,2022年,8月28日引言把非平稳的时间序列数据直接用于传统的计量经济回归分析,往往会影响分析的有效性,导致伪回归现象,因此应该避免这种情况。这也正是检验时间序列的平稳性的根本原因和目的。那么如果序列不平稳,怎么办呢?答:此时,不能无所作为。而应该进一步挽救局面。第七十九页,共一百五十九页,2022年,8月28日如何挽救局面呢?两种方法:第一种方法:将非平稳的序列进行差分,差分序列往往是平稳的,再将这些差分序列进行传统计量经济回归分析。但是,这种方法往往不可取,因为差分之后的序列失去了原始序列的含义。第二种方法:协整分析(检验)第八十页,共一百五十九页,2022年,8月28日学习前提要想弄懂协整的概念,首先要先弄懂单整的概念第八十一页,共一百五十九页,2022年,8月28日对非稳序列进行一次差分后,其差分序列若变为平稳序列,我们称原来的非平稳序列为1阶单整序列.如果经过一次差分后的差分序列仍然是非平稳的时间序列,还可以对差分序列再作差分变换,如果经过二次差分后变成了平稳的序列。我们称最原来的那个从未差分处理的非平稳序列为2阶单整序列.1、单整第八十二页,共一百五十九页,2022年,8月28日
依次类推,一个非平稳时间序列可以在进行了d次差分后,才变为平稳序列。这种经过d次差分后才平稳的时间序列,称为是d阶“单整”(Integrated)的,并记为I(d)。如二次差分平稳的就是二阶单整的,记为I(2)。本身就平稳的时间序列也被称为是0阶单整的,并记为I(0)。第八十三页,共一百五十九页,2022年,8月28日Eviews操作:
如何得知序列的单整阶数通过检验,已知SR和ZC都是非平稳的序列。那么,如何利用eviews操作得到SR和ZC各自的单整阶数呢?办法:先对SR的一阶差分进行平稳性检验先对ZC的一阶差分进行平稳性检验第八十四页,共一百五十九页,2022年,8月28日对SR的一阶差分进行平稳性检验在主菜单中选择Quick→SeriesStatistics→UnitRootTest(单位根检验).弹出以下对话框,在对话框中输入SR
,代表将对SR进行平稳性检验。(我们的目的是对SR的一阶差分进行平稳性检验,等一下会处理好)第八十五页,共一百五十九页,2022年,8月28日本例是对SR的一阶差分进行ADF检验,而不是对SR本身进行检验,因此,选取SR的一阶差分“1stdifference”选项;采用的是工具模型2(有截距项),因此要选取“Intercept”选项。本例选择最大滞后项数为11,系统会在11范围内自动选择最佳滞后项数。第八十六页,共一百五十九页,2022年,8月28日结果显示SR的一阶差分序列是平稳的,因为原假设成立的概率是0.0001第八十七页,共一百五十九页,2022年,8月28日结论:SR序列单整阶数
由于SR的一阶差分序列ΔSR=SRt-SRt-1是平稳的,也就是说SR是一阶单整的。第八十八页,共一百五十九页,2022年,8月28日对ZC的一阶差分进行平稳性检验在主菜单中选择Quick→SeriesStatistics→UnitRootTest(单位根检验).弹出以下对话框,在对话框中输入ZC
,代表将对ZC进行平稳性检验。(我们的目的是对ZC的一阶差分进行平稳性检验,等一下会处理好)第八十九页,共一百五十九页,2022年,8月28日本例是对ZC的一阶差分进行ADF检验,而不是对ZC本身进行检验,因此,选取ZC的一阶差分“1stdifference”选项;采用的是工具模型2(有截距项),因此要选取“Intercept”选项。本例选择最大滞后项数为11,系统会在11范围内自动选择最佳滞后项数。第九十页,共一百五十九页,2022年,8月28日结果显示ZC的一阶差分序列是平稳的,因为原假设成立的概率是0.0000第九十一页,共一百五十九页,2022年,8月28日结论:ZC序列单整阶数由于ZC的一阶差分序列ΔZC=ZCt-ZCt-1是平稳的,因此,ZC是一阶单整的。
注意(埋伏笔):如果两个变量都是单整变量,只有当它们的单整阶相同时,才可能协整;如果它们的单整阶不相同,就不可能协整。第九十二页,共一百五十九页,2022年,8月28日
在居民人均生活费支出(ZC)与可支配收入(SR)的例中,可以检验两个序列都是1阶单整序列。再考虑ZC与SR的线性组合:2、协整第九十三页,共一百五十九页,2022年,8月28日分析ZC与SR的线性组合:
以上ZC和SR的线性组合等于u,如果u是平稳的(就是说u的取值轨迹类似于心电图的模式)。那么,我们称ZC和SR的线性组合(形成的新序列)就是平稳的,因为这个新序列实际上就等于u。如果u是平稳的,u就是0阶单整的,因为它不需要再差分就平稳了。也就是说ZC和SR的线性组合形成的新序列(是一个序列)是0阶单整的。第九十四页,共一百五十九页,2022年,8月28日ZC和SR之间就是协整关系于是,我们认为ZC和SR之间是(1,1-0)阶协整。(注:括号中前面的那个1是指两个序列都是1阶单整序列的意思,后面那个1是用1阶单整的1减去线性组合而成的新序列的单整阶数0阶而来)。推而广之,这称为(d,d)阶协整。
由此可见:如果两个变量都是单整变量,只有当它们的单整阶数相同时,才可能协整;如果它们的单整阶数不相同,就不可能协整。
第九十五页,共一百五十九页,2022年,8月28日(d,d)阶协整是一类非常重要的协整关系,它的经济意义在于:两个变量,虽然它们具有各自的长期波动规律,但是如果它们是(d,d)阶协整的,则它们之间存在着一个长期稳定的比例关系。
例如:前面提到的ZC和SR,它们各自都是1阶单整,并且将会看到,它们是(1,1)阶协整,说明它们之间存在着一个长期稳定的比例关系,从计量经济学模型的意义上讲,建立如下居民生活费支出与可支配收入的模型:(d,d)阶协整是一类非常重要的协整关系第九十六页,共一百五十九页,2022年,8月28日变量选择是合理的,随机误差项一定是“白噪声”(即均值为0,方差不变的稳定随机序列),模型参数有合理的经济解释。这也解释了尽管这两时间序列是非稳定的,但却可以用经典的回归分析方法建立回归模型的原因。第九十七页,共一百五十九页,2022年,8月28日
从这里,我们已经初步认识到:检验变量之间的协整关系,在建立计量经济学模型中是非常重要的。而且,从变量之间是否具有协整关系出发选择模型的变量,其数据基础是牢固的,其统计性质是优良的。第九十八页,共一百五十九页,2022年,8月28日附注(很重要):协整其实包括两个层次的含义:我们假设ZC是2阶单整的,SR也是2阶单整的(有一个特征很重要,它们是同阶单整的)。第一个层次的协整:如果ZC和SR的线性组合不平稳,而是1阶单整,也就是说残差u要再经过一次差分之后才平稳。通过线性组合后使新序列(也就是残差)的单整阶数降低了。那么我们也称ZC和SR是协整的,只不过此时是(2,2-1)阶协整。这个层次的协整对我们没什么用。仅具备这个层次的协整,还不能用传统的回归分析方法对变量建立回归模型。第九十九页,共一百五十九页,2022年,8月28日附注(很重要):我们假设ZC是2阶单整的,SR也是2阶单整的(有一个特征很重要,它们是同阶单整的)。第二个层次的协整:如果ZC和SR的线性组合平稳,也就是0阶单整。通过线性组合后使新序列(也就是残差)的单整阶数降低到0了。那么我们称ZC和SR是协整的,此时是(2,2-0)阶协整。这个层次的协整对我们是有用的。我们关注的协整是第二个层次的协整,也就是说这个层次的协整也比第一个层次的要求严格,它要求线性组合后的新序列是平稳的。
只有具备第二个层次的协整,才能用传统的回归分析方法对变量建立回归模型。第一百页,共一百五十九页,2022年,8月28日协整检验的提出变量(序列)之间若具有协整关系,用经典的回归分析方法建立回归模型也是合理的。那么,如何检验变量间存在协整关系呢?下面就对这种协整关系的检验步骤进行分析……第一百零一页,共一百五十九页,2022年,8月28日协整的检验分为两变量和多变量检验,下面只介绍两个变量(或两个序列)检验方法。由协整性的定义可知,协整检验与单位根检验有着密切关系。如果有N个时间序列存在协整关系,则均衡误差ut必然是I(0)的,如果N个时间序列不存在协整关系,则均衡误差ut必然是I(1)以上的。因此可以通过对均衡误差序列ut的单位根检验来判断N个时间序列是否存在协整关系。3.协整检验第一百零二页,共一百五十九页,2022年,8月28日检验方法:EG(Engle—Granger)检验(恩格尔-葛兰杰检验法)
第一步:求出两个变量(或两个序列)各自的单整阶数。
第二步:若两个变量的单整阶数相同,就进入第三步;若不同,就不能协整。第三步:若两个变量的单整阶数相同,就采用OLS法对变量(如ZC和SR)进行回归,得到残差序列resid,将其命名为e,e就是对ut的近似替代。第四步:使用ADF法对序列e进行平稳性检验。(选用的工具模型通常是ADF检验的工具模型1(注意:不带截距项和时间趋势项):如下所示)第一百零三页,共一百五十九页,2022年,8月28日进行检验时,拒绝零假设H0:>=0,意味着误差项et是平稳序列,从而说明ZC与SR之间是协整的。如果e不是平稳序列,则ZC与SR不协整。总结:如果非平稳的ZC和SR之间存在协整关系,必须先后满足两个条件:(1)ZC和SR单整阶数相同;(2)采用OLS法对ZC和SR回归后,得到的残差e序列必须是平稳的。第一百零四页,共一百五十九页,2022年,8月28日对以上两个条件的补充说明如果第一个条件满足,第二个条件不一定满足;但是如果第二个条件满足,第一个条件肯定满足。因此,在实践中,往往直接检查第二个条件的满足性来判断ZC和SR之间是否存在协整关系。如果判断得出它们之间存在协整关系。那么虽然ZC和SR各自本身不平稳,但还是可以建立长期均衡关系,即通过传统计量经济回归分析来建立它们之间的因果关系模型,而不必担心伪回归问题(即不存在伪回归)。
当然,为了分析的严谨性和完整性,在研究中最好先后检验以上两个条件的满足性。第一百零五页,共一百五十九页,2022年,8月28日(增补)进一步遇到的问题前面我们分析了ZC序列和SR序列之间是否存在协整关系,分析的范围只有两个序列(或称两个变量)。那么实际中,如果碰到多于两个序列的情况,要探讨它们之间是否存在协整关系,又该怎么办呢?实际上如果要建立多元回归模型,就肯定会遇到多变量之间协整关系的分析。因此,这个问题在实际中其实是一个很普遍的问题。这就需要引出多变量协整关系的检验话题了。我们使用的方法称为扩展的EG(Engle—Granger)检验法。第一百零六页,共一百五十九页,2022年,8月28日多变量协整关系的检验—扩展的E-G检验
多变量协整关系的检验要比双变量复杂一些,主要在于协整变量间可能存在多种稳定的线性组合。假设有4个I(1)变量Z、X、Y、W,它们有如下的长期均衡关系:(*)其中,均衡误差项ut应是I(0)序列:
(**)第一百零七页,共一百五十九页,2022年,8月28日
对于多变量的协整检验过程,基本与双变量情形相同,即需检验变量是否存在稳定的线性组合,即组合后形成的新序列(或新变量)是平稳的。(这是第二个条件)那么第一个条件是不是必须要求原来的每个序列必须符合同阶单整的要求呢?回答:不是必须的。又问:那么到底第一个条件是什么呢?答:第一个条件就原来的多个序列或(变量)中,最高阶单整的序列个数(或变量个数)必须有两个或两个以上。
检验程序:第一百零八页,共一百五十九页,2022年,8月28日第一个条件举例X~I(1),Y~I(1),Z~(2),那么这三个序列中,最高阶的序列个数只有一个,就是序列Z,那么这三个序列就不可能协整。如果U~I(1),V~I(2),W~(2),那么这三个序列中,最高阶的序列个数有2个,即序列V、W,那么这三个序列有可能协整,注意是有可能。那么,为什么U、V、W三个序列有可能协整呢?第一百零九页,共一百五十九页,2022年,8月28日回答U、V、W三序列为何可能协整因为,V和W是同阶单整的,因此它们两者的某个线性组合而成的新序列就有可能变成1阶的序列(总之比原来各自的2阶降低了阶数)。那么当它们的线性组合而形成的新序列变成1阶单整序列之后,这个新的一阶单整序列再和U成为了同阶的单整序列了,此时都是一阶单整的序列了。那么它们有可能因为单整阶数相同,再通过线性组合变成一个更低阶的新序列,那么就成0阶单整了,也就是平稳了。最后的那个线性组合其实就是协整回归后的残差,也就是残差序列平稳了。残差序列平稳了,就可以说原来的U、V、W三者存在协整关系。第一百一十页,共一百五十九页,2022年,8月28日图示:U、V、W协整的可能性第一百一十一页,共一百五十九页,2022年,8月28日总之在检验是否存在稳定的线性组合时,需通过设置一个变量为被解释变量,其他变量为解释变量,进行OLS估计并检验残差序列是否平稳。
第一百一十二页,共一百五十九页,2022年,8月28日如果不平稳,则需更换被解释变量,进行同样的OLS估计及相应的残差项检验。当所有的变量都被作为被解释变量检验之后,仍不能得到平稳的残差项序列,则认为这些变量间不存在我们最终想要的协整关系。
同样地,检验残差项是否平稳的DF与ADF检验临界值要比通常的DF与ADF检验临界值小,而且该临界值还受到所检验的变量个数的影响。第一百一十三页,共一百五十九页,2022年,8月28日
表9.3.2给出了MacKinnon(1991)通过模拟试验得到的不同变量协整检验的临界值。第一百一十四页,共一百五十九页,2022年,8月28日EG法协整检验总结重点:两变量协整检验是多变量协整检验的特例。
多变量最高阶单整的变量数大于等于2,放到两个变量的协整检验中来,就变成了两个变量必须同阶单整。因为只有两个变量同阶单整,才符合最高阶单整的变量个数大于等于2的条件。第一百一十五页,共一百五十九页,2022年,8月28日多变量协整关系的检验—JJ检验Johansen于1988年,以及与Juselius于1990年提出了一种用极大或然法进行检验的方法,通常称为JJ检验。
《高等计量经济学》(清华大学出版社,2000年9月)P279-282.E-views中有JJ检验的功能。第一百一十六页,共一百五十九页,2022年,8月28日协整检验案例演示过程第一百一十七页,共一百五十九页,2022年,8月28日表10.3城镇居民月人均生活费支出和可支配收入序列序列月份1992199319941995199619971998
可支配收入
Sr
1151.83265.93273.98370.00438.37521.01643.402159.86196.96318.81385.21561.29721.01778.623124.00200.19236.45308.62396.82482.38537.164124.88199.48248.00320.33405.27492.96545.795127.75200.75261.16327.94410.06499.90567.996134.48208.50273.45338.53415.38508.81555.797145.05218.82278.10361.09434.70516.24570.238138.31209.07277.45356.30418.21509.98564.389144.25223.17292.71371.32442.30538.46576.3610143.86226.51289.36378.72440.81537.09599.4011149.12226.62296.50383.58449.03534.12577.4012139.93210.32277.60427.78449.17511.22606.14第一百一十八页,共一百五十九页,2022年,8月28日续表10.3
生活费支出
Zc
1139.47221.74234.28307.10373.58419.39585.702168.07186.49272.09353.55471.77528.09598.823110.47185.92202.88263.37350.36390.04417.274113.22185.26227.89281.22352.15405.63455.605115.82187.62235.70299.73369.57426.81466.206118.2012.11237.89308.18370.41422.00455.197118.03186.75239.71315.87376.90428.70458.578124.45187.07252.52331.88387.44459.29475.409147.70219.23286.75385.99454.93517.06591.4110135.14212.80270.00355.92403.77463.98494.5711135.20205.22274.37355.11410.10422.96496.6912128.03192.64250.01386.08400.48460.92516.16第一百一十九页,共一百五十九页,2022年,8月28日第一步,用OLS方法估计方程:
ZC=0+1SR+t,得到残差序列resid第一百二十页,共一百五十九页,2022年,8月28日第二步:检验残差序列的平稳性
(首先将残差序列resid命名为e)第一百二十一页,共一百五十九页,2022年,8月28日双击Workfile中的e显示的数据第一百二十二页,共一百五十九页,2022年,8月28日在主菜单中选择Quick→SeriesStatistics→UnitRootTest(单位根检验).弹出以下对话框,在对话框中输入e,代表将对e进行平稳性检验。第一百二十三页,共一百五十九页,2022年,8月28日运用ADF法对e进行平稳性检验本例是对e本身的水平值进行ADF检验,而不是对其差分值进行检验,因此,选取原序列level水平选项;采用的是工具模型1(没有截距项和时间趋势项),因此要选取“None”选项。本例选择最大滞后项数为11,系统会在11范围内自动选择最佳滞后项数。第一百二十四页,共一百五十九页,2022年,8月28日结果显示e是平稳的,因为原假设成立(即e有单位根)的概率是0.0000。因此SR与ZC是协整的。注意:在检验e序列的平稳性时,(工具)检验模型不包括常数项。第一百二十五页,共一百五十九页,2022年,8月28日ZC和SR之间协整关系判断由于e是平稳序列,所以原始序列ZC和SR之间存在长期均衡关系,即存在协整关系。结论:SR与ZC是可以使用经典回归模型方法建立回归模型的。第一百二十六页,共一百五十九页,2022年,8月28日
SR与ZC的回归结果
再将以上回归的结果作为原始模型,利用以前章节的知识对原始模型进行多重共线性、异方差、自相关检验……,通过检验调整后得到最终模型……
第一百二十七页,共一百五十九页,2022年,8月28日二、误差修正模型*(可选学)第一百二十八页,共一百五十九页,2022年,8月28日说明接下来我们要探讨误差修正模型,需要说明的是,误差修正模型不是必须要做的工作。如果我们要进一步探讨SR与ZC的关系,才需要用到误差修正模型。第一百二十九页,共一百五十九页,2022
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度床垫行业展会参展商采购合同3篇
- 2024版航天器发射与数据服务合同
- 2024版临时工合同协议书范文
- 2024年软件开发购销合同
- 个人借款协议模板2024专业版版B版
- 二零二五版二手房买卖合同公证服务合同规范与执行2篇
- 2024版股权激励合同2篇
- 二零二五版房屋买卖更名与配套设施移交协议3篇
- 二零二五年度环保项目垫资合同范本2篇
- 2024幼儿园幼儿教师聘任与劳动合同书3篇
- 2024-2025学年成都高新区七上数学期末考试试卷【含答案】
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 2025年浙江杭州市西湖区专职社区招聘85人历年高频重点提升(共500题)附带答案详解
- 《数学广角-优化》说课稿-2024-2025学年四年级上册数学人教版
- “懂你”(原题+解题+范文+话题+技巧+阅读类素材)-2025年中考语文一轮复习之写作
- 2025年景观照明项目可行性分析报告
- 2025年江苏南京地铁集团招聘笔试参考题库含答案解析
- 2025年度爱读书学长参与的读书项目投资合同
- 电力系统分析答案(吴俊勇)(已修订)
- 化学-河北省金太阳质检联盟2024-2025学年高三上学期12月第三次联考试题和答案
- 期末复习试题(试题)-2024-2025学年四年级上册数学 北师大版
评论
0/150
提交评论