安徽省宿州市娄庄职业高级中学2021-2022学年高三数学文月考试卷含解析_第1页
安徽省宿州市娄庄职业高级中学2021-2022学年高三数学文月考试卷含解析_第2页
安徽省宿州市娄庄职业高级中学2021-2022学年高三数学文月考试卷含解析_第3页
安徽省宿州市娄庄职业高级中学2021-2022学年高三数学文月考试卷含解析_第4页
安徽省宿州市娄庄职业高级中学2021-2022学年高三数学文月考试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宿州市娄庄职业高级中学2021-2022学年高三数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若f(x)是偶函数,且当时,f(x)=x-1,则f(x-1)<0的解集是(

) A.{x|-1<x<0} B.{x|x<0或1<x<2}C.{x|0<x<2} D.{x|1<x<2}参考答案:C略2.若则(

)A.

B.

C.

D.1参考答案:B设,则,,所以.3.以下说法错误的是(

)A.命题“若x2-3x+2=0,则x=1”的逆否命题是“若x≠1,则x2-3x+2≠0”B.“x=1”是“x2-3x+2=0”的充分不必要条件C.若p∧q为假命题,则p,q均为假命题D.若命题p:?x0∈R,使得+x0+1<0,则﹁p:?x∈R,都有x2+x+1≥0参考答案:【知识点】命题的真假判断与应用;四种命题间的逆否关系;必要条件、充分条件与充要条件的判断.A2【答案解析】C解析:解:命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”故A为真命题;“x=1”是“x2﹣3x+2=0”的充分不必要条件.故B为真命题;若p∧q为假命题,则p、q存在至少一个假命题,但p、q不一定均为假命题,故C为假命题;命题p:∈R,使得x2+x+1<0.则非p:∈R,均有x2+x+1≥0,故D为真命题;故选C.【思路点拨】根据四种命题的定义,我们可以判断A的真假;根据充要条件的定义,我们可以判断B的真假;根据复合命题的真值表,我们可以判断C的真假;根据特称命题的否定方法,我们可以判断D的真假,进而得到答案.4.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是A.2 B. C. D.参考答案:C5.已知函数的图象的两相邻对称轴之间的距离为,要得到的图象,只须把的图象A.向右平移个单位

B.向右平移个单位C.向左平移个单位

D.向左平移个单位参考答案:D略6.已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35 B.0.25 C.0.20 D.0.15参考答案:A【考点】模拟方法估计概率.【分析】由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有可以通过列举得到共5组随机数,根据概率公式,得到结果.【解答】解:由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、431、393、113.共7组随机数,∴所求概率为=0.35.故选A.7.若某多面体的三视图如图所示,则此多面体的体积是(

)A.2

B.4

C.6

D.12参考答案:A略8.已知集合M={x||x-1|≤2,x∈R},P={x|≥1,x∈Z},则M∩P等于

()

A.{x|0<x≤3,x∈Z}

B.{x|0≤x≤3,x∈Z}

C.{x|-1≤x≤0,x∈Z}

D.{x|-1≤x<0,x∈Z}参考答案:B9.f(x)是定义在R上的奇函数,且满足f(x+2)=f(x),又当x∈(0,1)时,f(x)=2x-1,则等于().A.-5

B.-6

C.-

D.-参考答案:D略10.已知是第二象限的角,,则= (

A.

B.

C.

D.参考答案:答案:D二、填空题:本大题共7小题,每小题4分,共28分11.如图所示,在斜度一定的山坡上的一点A处,测得山顶上一建筑物CD的顶端C对于山坡的斜度为,向山顶前进100米到达B点,再次测量得其斜度为,假设建筑物高50米,设山坡对于地平面的斜度为,则

.参考答案:12.在等差数列中,已知的值为

.参考答案:513.已知F1,F2分别为双曲线的左、右焦点,点P在双曲线C上,G,I分别为的重心、内心,若GI∥x轴,则的外接圆半径R=

.参考答案:514.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1——160编号。按编号顺序平均分成20组(1—8号,9—16号,……153—160号),若第16组应抽出的号码为126,则第一组中用抽签方法确定的号码是________。参考答案:6

略15.数列()满足,则=_____________.参考答案:16.在三棱柱中,已知平面ABC,,,且此三棱柱的各个顶点都在一个球面上,则球的表面积为_______.参考答案:17.某校老、中、青老师的人数分别为80、160、240.现要用分层抽样的方法抽取容量为60的样本参加普通话测试,则应抽取的中年老师的人数为

.参考答案:20

略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=(x﹣2)ex和g(x)=kx3﹣x﹣2(1)若函数g(x)在区间(1,2)不单调,求k的取值范围;(2)当x∈[0,+∞)时,不等式f(x)≥g(x)恒成立,求k的最大值.参考答案:【考点】导数在最大值、最小值问题中的应用;函数单调性的性质;函数恒成立问题.【专题】导数的综合应用.【分析】(1)求出g'(x)=3kx2﹣1,通过①当k≤0时,②当k>0时,函数g(x)在区间(1,2)不单调,判断导数的符号,得到函数有极值,即可求k的取值范围;(2)构造h(x)=f(x)﹣g(x)=(x﹣2)ex﹣kx3+x+2,转化h(x)=(x﹣2)ex﹣kx3+x+2≥0在[0,+∞)上恒成立,通过h'(0)=0,对时,时,判断函数的单调性,以及函数的最值,是否满足题意,求出k的最大值.【解答】解:(1)g'(x)=3kx2﹣1…①当k≤0时,g'(x)=3kx2﹣1≤0,所以g(x)在(1,2)单调递减,不满足题意;…②当k>0时,g(x)在上单调递减,在上单调递增,因为函数g(x)在区间(1,2)不单调,所以,解得…综上k的取值范围是.…(2)令h(x)=f(x)﹣g(x)=(x﹣2)ex﹣kx3+x+2依题可知h(x)=(x﹣2)ex﹣kx3+x+2≥0在[0,+∞)上恒成立

…h'(x)=(x﹣1)ex﹣3kx2+1,令φ(x)=h'(x)=(x﹣1)ex﹣3kx2+1,有φ(0)=h'(0)=0且φ'(x)=x(ex﹣6k)…①当6k≤1,即时,因为x≥0,ex≥1,所以φ'(x)=x(ex﹣6k)≥0所以函数φ(x)即h'(x)在[0,+∞)上单调递增,又由φ(0)=h'(0)=0故当x∈[0,+∞)时,h'(x)≥h'(0)=0,所以h(x)在[0,+∞)上单调递增又因为h(0)=0,所以h(x)≥0在[0,+∞)上恒成立,满足题意;…②当6k>1,即时,当x∈(0,ln(6k)),φ'(x)=x(ex﹣6k)<0,函数φ(x)即h'(x)单调递减,又由φ(0)=h'(0)=0,所以当x∈(0,ln(6k)),h'(x)<h'(0)=0所以h(x)在(0,ln(6k))上单调递减,又因为h(0)=0,所以x∈(0,ln(6k))时h(x)<0,这与题意h(x)≥0在[0,+∞)上恒成立相矛盾,故舍.…综上,即k的最大值是.…【点评】本题考查函数的导数的综合应用,构造法以及转化思想的应用,同时考查分类讨论思想的应用,难度比较大,考查分析问题解决问题的能力.19.(本小题满分12分)旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过人时,飞机票每张收费元;若旅行团的人数多于人时,则予以优惠,每多人,每个人的机票费减少元,但旅行团的人数最多不超过人.设旅行团的人数为人,飞机票价格为元,旅行社的利润为元.(I)写出飞机票价格元与旅行团人数之间的函数关系式;(II)当旅行团人数为多少时,旅行社可获得最大利润?求出最大利润.参考答案:解:(I)依题意得,当时,;当时,;……………4分(II)设利润为,则…6分当时,,

当时,

又当时,,答:当旅游团人数为人时,旅行社可获得最大利润元。……12分略20..某大型工厂有5台大型机器,在1个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障的概率为.已知1名工人每月只有维修1台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得10万元的利润,否则将亏损3万元.该工厂每月需支付给每名维修工人1.5万元的工资.(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有2名维修工人,求工厂每月能正常运行的概率;(2)已知该厂现有4名维修工人.(ⅰ)记该厂每月获利为X万元,求X的分布列与数学期望;(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘1名维修工人?参考答案:(1);(2)(ⅰ);(ⅱ)不应该.【分析】(1)根据相互独立事件的概率公式计算出事故机器不超过台的概率即可;(2)(i)求出的可能取值及其对应的概率,得出的分布列和数学期望;(ⅱ)求出有名维修工人时的工厂利润,得出结论.【详解】解:(1)因为该工厂只有名维修工人,故要使工厂正常运行,最多只有台大型机器出现故障.∴该工厂正常运行的概率为:.(2)(i)的可能取值有,,,.∴的分布列为:X3144P

∴.(ⅱ)若工厂再招聘一名维修工人,则工厂一定能正常运行,工厂所获利润为万元,因为,∴该厂不应该再招聘名维修工人.【点睛】本题考查了相互独立事件的概率计算,离散型随机变量的分布列与数学期望计算,属于中档题.21.(本题满分12分)如图所示,在四棱锥中,平面平面,∥,是等边三角形,已知,.(1)设是上的一点,求证:平面平面;(2)求四棱锥的体积.参考答案:22.(本题共14分)已知函数的导函数的两个零点为-3和0.(Ⅰ)求的单调区间;(Ⅱ)若的极小值为-1,求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论