




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若向量,则()A.30 B.31 C.32 D.332.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学的平均分高;③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差.以上说法正确的是()A.③④ B.①② C.②④ D.①③④3.抛物线y2=ax(a>0)的准线与双曲线C:x28A.8 B.6 C.4 D.24.当时,函数的图象大致是()A. B.C. D.5.函数的部分图象如图所示,则的单调递增区间为()A. B.C. D.6.是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是()A. B. C. D.7.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A. B. C. D.8.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为()A. B.C. D.9.已知集合,,则为()A. B. C. D.10.已知集合,则集合的非空子集个数是()A.2 B.3 C.7 D.811.已知向量,夹角为,,,则()A.2 B.4 C. D.12.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增 B.函数的周期是C.函数的图象关于点对称 D.函数在上最大值是1二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为______.14.若变量,满足约束条件则的最大值为________.15.请列举用0,1,2,3这4个数字所组成的无重复数字且比210大的所有三位奇数:___________.16.已知△的三个内角为,,,且,,成等差数列,则的最小值为__________,最大值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:现随机抽取了100为会员统计它们的消费次数,得到数据如下:假设该项目的成本为每次30元,根据给出的数据回答下列问题:(1)估计1位会员至少消费两次的概率(2)某会员消费4次,求这4次消费获得的平均利润;(3)假设每个会员每星期最多消费4次,以事件发生的频率作为相应事件的概率,从会员中随机抽取两位,记从这两位会员的消费获得的平均利润之差的绝对值为,求的分布列及数学期望18.(12分)已知椭圆:(),四点,,,中恰有三点在椭圆上.(1)求椭圆的方程;(2)设椭圆的左右顶点分别为.是椭圆上异于的动点,求的正切的最大值.19.(12分)在平面直角坐标系中,,,且满足(1)求点的轨迹的方程;(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程.20.(12分)在直角坐标系中,已知点,的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)设曲线与曲线相交于,两点,求的值.21.(12分)在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于M、N两点。(1)写出直线l的普通方程和曲线C的直角坐标方程:(2)若成等比数列,求a的值。22.(10分)已知动点到定点的距离比到轴的距离多.(1)求动点的轨迹的方程;(2)设,是轨迹在上异于原点的两个不同点,直线和的倾斜角分别为和,当,变化且时,证明:直线恒过定点,并求出该定点的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
先求出,再与相乘即可求出答案.【详解】因为,所以.故选:C.【点睛】本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.2.A【解析】
由茎叶图中数据可求得中位数和平均数,即可判断①②③,再根据数据集中程度判断④.【详解】由茎叶图可得甲同学成绩的中位数为,乙同学成绩的中位数为,故①错误;,,则,故②错误,③正确;显然甲同学的成绩更集中,即波动性更小,所以方差更小,故④正确,故选:A【点睛】本题考查由茎叶图分析数据特征,考查由茎叶图求中位数、平均数.3.A【解析】
求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值.【详解】抛物线y2=ax(a>0)的准线为x=-a4,双曲线C:x28-y24【点睛】本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.4.B【解析】由,解得,即或,函数有两个零点,,不正确,设,则,由,解得或,由,解得:,即是函数的一个极大值点,不成立,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.5.D【解析】
由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.【详解】由图象知,所以,,又图象过点,所以,故可取,所以令,解得所以函数的单调递增区间为故选:.【点睛】本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.6.C【解析】
求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利用二次函数的基本性质求出的最小值,由此可得出,即可得解.【详解】如下图所示:设点关于直线的对称点为点,则,整理得,解得,即点,所以,圆关于直线的对称圆的方程为,设点,则,当时,取最小值,因此,.故选:C.【点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.7.C【解析】令圆的半径为1,则,故选C.8.C【解析】
根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.【详解】最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.9.C【解析】
分别求解出集合的具体范围,由集合的交集运算即可求得答案.【详解】因为集合,,所以故选:C【点睛】本题考查对数函数的定义域求法、一元二次不等式的解法及集合的交集运算,考查基本运算能力.10.C【解析】
先确定集合中元素,可得非空子集个数.【详解】由题意,共3个元素,其子集个数为,非空子集有7个.故选:C.【点睛】本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个.11.A【解析】
根据模长计算公式和数量积运算,即可容易求得结果.【详解】由于,故选:A.【点睛】本题考查向量的数量积运算,模长的求解,属综合基础题.12.A【解析】
根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【详解】将横坐标缩短到原来的得:当时,在上单调递增在上单调递增,正确;的最小正周期为:不是的周期,错误;当时,,关于点对称,错误;当时,此时没有最大值,错误.本题正确选项:【点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
对函数求导,得出在处的一阶导数值,即得出所求切线的斜率,再运用直线的点斜式求出切线的方程.【详解】令,,所以,又,所求切线方程为,即.故答案为:.【点睛】本题考查运用函数的导函数求函数在切点处的切线方程,关键在于求出在切点处的导函数值就是切线的斜率,属于基础题.14.7【解析】
画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.【详解】作出不等式组所表示的平面区域,如下图阴影部分所示.观察可知,当直线过点时,有最大值,.故答案为:.【点睛】本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题.15.231,321,301,1【解析】
分个位数字是1、3两种情况讨论,即得解【详解】0,1,2,3这4个数字所组成的无重复数字比210大的所有三位奇数有:(1)当个位数字是1时,数字可以是231,321,301;(2)当个位数字是3时数字可以是1.故答案为:231,321,301,1【点睛】本题考查了分类计数法的应用,考查了学生分类讨论,数学运算的能力,属于基础题.16.【解析】
根据正弦定理可得,利用余弦定理以及均值不等式,可得角的范围,然后构造函数,利用导数,研究函数性质,可得结果.【详解】由,,成等差数列所以所以又化简可得当且仅当时,取等号又,所以令,则当,即时,当,即时,则在递增,在递减所以由,所以所以的最小值为最大值为故答案为:,【点睛】本题考查等差数列、正弦定理、余弦定理,还考查了不等式、导数的综合应用,难点在于根据余弦定理以及不等式求出,考验分析能力以及逻辑思维能力,属难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)22.5(3)见解析,【解析】
(1)根据频数计算频率,得出概率;(2)根据优惠标准计算平均利润;(3)求出各种情况对应的的值和概率,得出分布列,从而计算出数学期望.【详解】解:(1)估计1位会员至少消费两次的概率;(2)第1次消费利润;第2次消费利润;第3次消费利润;第4次消费利润;这4次消费获得的平均利润:(3)1次消费利润是27,概率是;2次消费利润是,概率是;3次消费利润是,概率是;4次消费利润是,概率是;由题意:故分布列为:0期望为:【点睛】本题考查概率、平均利润、离散型随机变量的分布列和数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于中档题.18.(1);(2)【解析】
(1)分析可得必在椭圆上,不在椭圆上,代入即得解;(2)设直线PA,PB的倾斜角分别为,斜率为,可得.则,,利用均值不等式,即得解.【详解】(1)因为关于轴对称,所以必在椭圆上,∴不在椭圆上∴,,即.(2)设椭圆上的点(),设直线PA,PB的倾斜角分别为,斜率为又∴.,,(不妨设).故当且仅当,即时等号成立【点睛】本题考查了直线和椭圆综合,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.19.(1).(2)的方程为.【解析】
(1)令,则,由此能求出点C的轨迹方程.(2)令,令直线,联立,得,由此利用根的判别式,韦达定理,三角形面积公式,结合已知条件能求出直线的方程。【详解】解:(1)因为,即直线的斜率分别为且,设点,则,整理得.(2)令,易知直线不与轴重合,令直线,与联立得,所以有,由,故,即,从而,解得,即。所以直线的方程为。【点睛】本题考查椭圆方程、直线方程的求法,考查椭圆方程、椭圆与直线的位置关系,考查运算求解能力,考查化归与转化思想,是中档题。20.(1);(2)【解析】
(1)消去参数方程中的参数,求得的普通方程,利用极坐标和直角坐标的转化公式,求得的直角坐标方程.(2)求得曲线的标准参数方程,代入的直角坐标方程,写出韦达定理,根据直线参数中参数的几何意义,求得的值.【详解】(1)由的参数方程(为参数),消去参数可得,由曲线的极坐标方程为,得,所以的直角坐方程为,即.(2)因为在曲线上,故可设曲线的参数方程为(为参数),代入化简可得.设,对应的参数分别为,,则,,所以.【点睛】本小题主要考查参数方程化为普通方程,考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阜阳科技职业学院《材料力学(1)》2023-2024学年第二学期期末试卷
- 豫章师范学院《招投标与合同管理》2023-2024学年第二学期期末试卷
- 上海师范大学天华学院《健身教练技能培训》2023-2024学年第二学期期末试卷
- 莱芜职业技术学院《生态学实验》2023-2024学年第二学期期末试卷
- 江西管理职业学院《图像编辑技术》2023-2024学年第二学期期末试卷
- 浙江工商职业技术学院《中学化学问题设计与问题解决》2023-2024学年第二学期期末试卷
- 周口师范学院《运动控制导论》2023-2024学年第二学期期末试卷
- 青海柴达木职业技术学院《给排水工程仪表与控制》2023-2024学年第二学期期末试卷
- 河北农业大学现代科技学院《犯罪心理学专题》2023-2024学年第二学期期末试卷
- 重庆科技学院《世界平面设计史一》2023-2024学年第二学期期末试卷
- 银行业金融机构监管数据标准化规范(2021版)数据结构一览表
- 电子商务基础与实务(第四版)高职PPT完整全套教学课件
- 信息论与编码(第4版)完整全套课件
- 施工吊篮工程监理实施细则
- 自动扶梯与自动人行道调试作业指导书(通用版)
- 2023年全国卷英语甲卷讲评课件-2024届高考英语复习
- 现代通信原理与技术(第五版)PPT全套完整教学课件
- 《战胜抑郁 走出抑郁症的30天自我康复训练》读书笔记思维导图
- 办公电脑领用、保管登记表
- 幼儿园课件:时钟国王
- 最值问题-阿氏圆
评论
0/150
提交评论