河南省郑州市郑州枫杨外国语学校2022年数学九年级第一学期期末联考模拟试题含解析_第1页
河南省郑州市郑州枫杨外国语学校2022年数学九年级第一学期期末联考模拟试题含解析_第2页
河南省郑州市郑州枫杨外国语学校2022年数学九年级第一学期期末联考模拟试题含解析_第3页
河南省郑州市郑州枫杨外国语学校2022年数学九年级第一学期期末联考模拟试题含解析_第4页
河南省郑州市郑州枫杨外国语学校2022年数学九年级第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列事件不属于随机事件的是()A.打开电视正在播放新闻联播 B.某人骑车经过十字路口时遇到红灯C.抛掷一枚硬币,出现正面朝上 D.若今天星期一,则明天是星期二2.如图,过反比例函数(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S1、S2,比较它们的大小,可得()A.S1>S2 B.S1=S2 C.S1<S2 D.大小关系不能确定3.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为().A. B. C. D.4.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1) B.图象关于y轴对称C.图象位于第二、四象限 D.当x<0时,y随x的增大而减小5.计算的结果是()A. B. C. D.96.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6 B.众数是7 C.中位数是5 D.方差是87.如图,是的直径,是弦,点是劣弧(含端点)上任意一点,若,则的长不可能是()A.4 B.5 C.12 D.138.某闭合并联电路中,各支路电流与电阻成反比例,如图表示该电路与电阻的函数关系图象,若该电路中某导体电阻为,则导体内通过的电流为()A. B. C. D.9.如图,△ABC中,点D为边BC的点,点E、F分别是边AB、AC上两点,且EF∥BC,若AE:EB=m,BD:DC=n,则()A.若m>1,n>1,则2S△AEF>S△ABD B.若m>1,n<1,则2S△AEF<S△ABDC.若m<1,n<1,则2S△AEF<S△ABD D.若m<1,n>1,则2S△AEF<S△ABD10.如图,在中,,则的长度为A.1 B. C. D.二、填空题(每小题3分,共24分)11.小王存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为__________.12.若点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),则(3a+b)2020=______.13.将抛物线向左平移3个单位,再向下平移2个单位,则得到的抛物线解析式是________.(结果写成顶点式)14.如图,直线l1∥l2,直线l3与l1、l2分别交于点A、B.若∠1=69°,则∠2的度数为_____.15.一元二次方程2x2+3x+1=0的两个根之和为__________.16.如图,的顶点都在正方形网格的格点上,则的值为________.17.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球5个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___个白球.18.如图,直角三角形中,,,,在线段上取一点,作交于点,现将沿折叠,使点落在线段上,对应点记为;的中点的对应点记为.若,则______.三、解答题(共66分)19.(10分)已知抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0),且与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的解析式;(2)点P是y轴正半轴上的一个动点,连结DP,将线段DP绕着点D顺时针旋转90°得到线段DE,点P的对应点E恰好落在抛物线上,求出此时点P的坐标;(3)点M(m,n)是抛物线上的一个动点,连接MD,把MD2表示成自变量n的函数,并求出MD2取得最小值时点M的坐标.20.(6分)如图,一次函数的图象与反比例函数的图象相交于两点,与轴相交于点.(1)求一次函数与反比例函数的解析式;(2)若点与点关于轴对称,求的面积;(3)若是反比例函数上的两点,当时,比与的大小关系.21.(6分)请阅读下面材料:问题:已知方程x1+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的一半.解:设所求方程的根为y,y=,所以x=1y把x=1y代入已知方程,得(1y)1+1y-3=0化简,得4y1+1y-3=0故所求方程为4y1+1y-3=0这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”解决下列问题:(1)已知方程1x1-x-15=0,求一个关于y的一元二次方程,使它的根是已知方程根的相反数,则所求方程为:_________.(1)已知方程ax1+bx+c=0(a≠0)有两个不相等的实数根,求一个关于y的一元二次方程,使它的根比已知方程根的相反数的一半多1.22.(8分)已知关于x的一元二次方程(a+c)x2+2bx+a-c=0,其中a、b、c分别为△ABC三边的长.(1)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)若△ABC是正三角形,试求这个一元二次方程的根.23.(8分)已知二次函数y=x2-2x+m(m为常数)的图像与x轴相交于A、B两点.(1)求m的取值范围;(2)若点A、B位于原点的两侧,求m的取值范围.24.(8分)关于的一元二次方程有两个实数根,求的取值范围.25.(10分)如图,在中,点在边上,.点在边上,.(1)求证:;(2)若,求的长.26.(10分)如图1,在中,∠B=90°,,点D,E分别是边BC,AC的中点,连接将绕点C按顺时针方向旋转,记旋转角为.问题发现:当时,_____;当时,_____.拓展探究:试判断:当时,的大小有无变化?请仅就图2的情况给出证明.问题解决:当旋转至A、D、E三点共线时,直接写出线段BD的长.

参考答案一、选择题(每小题3分,共30分)1、D【分析】不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.据此可判断出结论.【详解】A.打开电视正在播放新闻联播,是随机事件,不符合题意;B.某人骑车经过十字路口时遇到红灯,是随机事件,不符命题意;C.抛掷一枚硬币,出现正面朝上,是随机事件,不符合题意,D.若今天星期一,则明天是星期二,是必然事件,符合题意.故选:D.【点睛】此题考查了必然事件、不可能事件、随机事件的概念.关键是理解不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、B【分析】根据反比例函数的几何意义,直接求出S1、S1的值即可进行比较.【详解】由于A、B均在反比例函数的图象上,且AC⊥x轴,BD⊥x轴,则S1=;S1=.故S1=S1.故选:B.【点睛】此题考查了反比例函数k的几何意义,找到相关三角形,求出k的绝对值的一半即为三角形的面积.3、B【分析】取AB的中点M,连接CM,EM,当CE=CM+EM时,CE的值最大,根据旋转的性质得到AC′=AC=2,由三角形的中位线的性质得到EMAC′=2,根据勾股定理得到AB=2,即可得到结论.【详解】取AB的中点M,连接CM,EM,∴当CE=CM+EM时,CE的值最大.∵将直角边AC绕A点逆时针旋转至AC′,∴AC′=AC=2.∵E为BC′的中点,∴EMAC′=2.∵∠ACB=90°,AC=BC=2,∴AB=2,∴CMAB,∴CE=CM+EM.故选B.【点睛】本题考查了旋转的性质,直角三角形的性质,三角形的中位线的性质,正确的作出辅助线是解题的关键.4、D【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=的图象上,故本选项错误;

B选项:反比例函数的图象关于原点中心对称,故本选项错误;

C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;

D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.

故选B.5、D【分析】根据负整数指数幂的计算方法:,为正整数),求出的结果是多少即可.【详解】解:,计算的结果是1.故选:D.【点睛】此题主要考查了负整数指数幂:,为正整数),要熟练掌握,解答此题的关键是要明确:(1)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(2)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.6、D【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.【详解】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,1.A.极差,结论错误,故A不符合题意;B.众数为5,7,11,3,1,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,1,11,中位数为7,结论错误,故C不符合题意;D.平均数是,方差.结论正确,故D符合题意.故选D.【点睛】本题考查了折线统计图,重点考查了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.7、A【分析】连接AC,如图,利用圆周角定理得到∠ACB=90°,利用勾股定理得到AC=5,则5≤AP≤1,然后对各选项进行判断.【详解】解:连接AC,如图,

∵AB是⊙O的直径,

∴∠ACB=90°,∴,∵点P是劣弧(含端点)上任意一点,∴AC≤AP≤AB,

即5≤AP≤1.

故选:A.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.8、B【分析】电流I(A)与电阻R(Ω)成反比例,可设I=,根基图象得到图象经过点(5,2),代入解析式就得到k的值,从而能求出解析式.【详解】解:可设,根据题意得:,解得k=10,∴.当R=4Ω时,(A).故选B.【点睛】本题主要考查的是反比例函数的应用,利用待定系数法是求解析式时常用的方法.9、D【分析】根据相似三角形的判定与性质,得出,,从而建立等式关系,得出,然后再逐一分析四个选项,即可得出正确答案.【详解】解:∵EF∥BC,若AE:EB=m,BD:DC=n,​∴△AEF∽△ABC,∴,∴,∴,∴∴当m=1,n=1,即当E为AB中点,D为BC中点时,,A.当m>1,n>1时,S△AEF与S△ABD同时增大,则或,即2或2>,故A错误;B.当m>1,n<1,S△AEF增大而S△ABD减小,则,即2,故B错误;C.m<1,n<1,S△AEF与S△ABD同时减小,则或,即2或2<,故C错误;D.m<1,n>1,S△AEF减小而S△ABD增大,则,即2<,故D正确.故选D.【点睛】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的性质是解答本题的关键.10、C【分析】根据已知条件得到,根据相似三角形的判定和性质可得,即可得到结论.【详解】解:∵,

∴,

∵DE∥BC,

∴△ADE∽△ABC,,∴,∴BC=4.故选:C.【点睛】本题考查了相似三角形的判定与性质,熟悉相似基本图形掌握相似三角形的判定与性质是解题关键.二、填空题(每小题3分,共24分)11、【分析】设定期一年的利率是,则存入一年后的本息和是元,取3000元后余元,再存一年则有方程,解这个方程即可求解.【详解】解:设定期一年的利率是,根据题意得:一年时:,取出3000后剩:,同理两年后是,即方程为,解得:,(不符合题意,故舍去),即年利率是.故答案为:10%.【点睛】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和本金利率期数),难度一般.12、1【分析】直接利用关于原点对称点的性质得出3a+b=﹣1,进而得出答案.【详解】解:∵点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),∴,故3a+b=﹣1,则(3a+b)2020=1.故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键.13、【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=x2向左平移3个单位后所得直线解析式为:y=(x+3)2;再向下平移2个单位为:.故答案为:【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14、111°【分析】根据平行线的性质求出∠3=∠1=69°,即可求出答案.【详解】解:∵直线l1∥l2,∠1=69°,∴∠3=∠1=69°,∴∠2=180°﹣∠3=111°,故答案为111°.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,同位角相等.15、-【解析】试题解析:由韦达定理可得:故答案为:点睛:一元二次方程根与系数的关系:16、【分析】先证明△ABC为直角三角形,再根据正切的定义即可求解.【详解】根据网格的性质设网格的边长为1,则AB=,AC=,BC=∵AB2+AC2=BC2,∴△ABC为直角三角形,∠A=90°,∴=故填:.【点睛】此题主要考查正切的求解,解题的关键是证明三角形为直角三角形.17、1【分析】先由“频率=频数÷数据总数”计算出频率,再由简单事件的概率公式列出方程求解即可.【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是,设口袋中大约有x个白球,则,解得.故答案为:1.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.18、3.2【分析】先利用勾股定理求出AC,设,依题意得,故,易证,得到,再在中利用勾股定理解出,又得,列出方程解方程得到x,即可得到AD【详解】在中利用勾股定理求出,设,依题意得,故.由求出,再在中,利用勾股定理求出,然后由得,即,解得,从而.【点睛】本题考查勾股定理与相似三角形,解题关键在于灵活运用两者进行线段替换三、解答题(共66分)19、(2)y=﹣x2+2x+2;(2)点P的坐标为(0,2+);(2)MD2=n2﹣n+3;点M的坐标为(,)或(,).【分析】(2)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)过点E作EF⊥x轴于点F,根据旋转的性质及同角的余角相等,可证出△ODP≌△FED(AAS),由抛物线的解析式可得出点D的坐标,进而可得出OD的长度,利用全等三角形的性质可得出EF的长度,再利用二次函数图象上点的坐标特征可求出DF,OP的长,结合点P在y轴正半轴即可得出点P的坐标;(2)利用二次函数图象上点的坐标特征可得出m2﹣2m=2﹣n,根据点D,M的坐标,利用两点间的距离公式可得出MD2=n2﹣n+3,利用配方法可得出当MD2取得最小值时n的值,再利用二次函数图象上点的坐标特征即可求出当MD2取得最小值时点M的坐标.【详解】(2)将A(﹣2,0),B(2,0)代入y=ax2+bx+2,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+2.(2)过点E作EF⊥x轴于点F,如图所示.∵∠OPD+∠ODP=90°,∠ODP+∠FDE=90°,∴∠OPD=∠FDE.在△ODP和△FED中,,∴△ODP≌△FED(AAS),∴DF=OP,EF=DO.∵抛物线的解析式为y=﹣x2+2x+2=﹣(x﹣2)2+3,∴点D的坐标为(2,0),∴EF=DO=2.当y=2时,﹣x2+2x+2=2,解得:x2=2﹣(舍去),x2=2+,∴DF=OP=2+,∴点P的坐标为(0,2+).(2)∵点M(m,n)是抛物线上的一个动点,∴n=﹣m2+2m+2,∴m2﹣2m=2﹣n.∵点D的坐标为(2,0),∴MD2=(m﹣2)2+(n﹣0)2=m2﹣2m+2+n2=2﹣n+2+n2=n2﹣n+3.∵n2﹣n+3=(n﹣)2+,∴当n=时,MD2取得最小值,此时﹣m2+2m+2=,解得:m2=,m2=.∴MD2=n2﹣n+3,当MD2取得最小值时,点M的坐标为(,)或(,).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、全等三角形的判定与性质、二次函数的最值以及两点间的距离公式,解题的关键是:(2)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用全等三角形的性质及二次函数图象上点的坐标特征求出OP的长;(2)利用两点间的距离公式结合二次函数图象上点的坐标特征,找出MD2=n2﹣n+3.20、(1)一次函数的解析式为,反比例函数的解析式为;(2);(3).【分析】(1)利用待定系数法即可解决求问题.

(2)根据对称性求出点D坐标,发现BD∥x轴,利用三角形的面积公式计算即可.

(3)利用反比例函数的增减性解决问题即可.【详解】解:(1)反比例函数经过点,,点在上,,,把坐标代入,则有,解得,一次函数的解析式为,反比例函数的解析式为.(2)直线交轴于,,关于轴对称,轴,.(3)是反比例函数上的两点,且,.【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题,学会利用函数的增减性,比较函数值的大小.21、(1)1y1+y-15=0;(1).【分析】(1)利用题中解法,设所求方程的根为y,则y=-x,所以x=-y,然后把x=-y代入已知方程整理后即可得到结果;(1)设所求方程的根为y,则y=(x≠0),于是x=4-1y(y≠0),代入方程ax1+bx+c=0整理即可得.【详解】解:(1)设所求方程的根为y,则y=-x,所以x=-y,把x=-y代入1x1-x-15=0,整理得,1y1+y-15=0,故答案为:1y1+y-15=0;(1)设所求方程的根为y,则y=(x≠0),所以,x=4-1y(y≠0),把x=4-1y代入方程ax1+bx+c=0,整理得:.【点睛】本题主要考查一元二次方程的解,解题的关键是理解方程的解的定义和解题的方法.22、(1)直角三角形;(2).x1=-1,x2=0【解析】试题分析:(1)根据方程有两个相等的实数根得出△=0,即可得出a2=b2+c2,根据勾股定理的逆定理判断即可;(2)根据等边进行得出a=b=c,代入方程化简,即可求出方程的解.解:(1)△ABC是直角三角形,理由是:∵关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0有两个相等的实数根,∴△=0,即(﹣2b)2﹣4(a+c)(a﹣c)=0,∴a2=b2+c2,∴△ABC是直角三角形;(2)∵△ABC是等边三角形,∴a=b=c,∴方程(a+c)x2﹣2bx+(a﹣c)=0可整理为2ax2﹣2ax=0,∴x2﹣x=0,解得:x1=0,x2=1.考点:根的判别式;等边三角形的性质;勾股定理的逆定理.23、(1)m<1;(2)m<0【分析】(1)根据题意可知一元二次方程有两个不相等的实数根,即b2-4ac>0然后利用根的判别式确定取值范围;(2)由题意得:x1x2<0,即m<0,即可求解;【详解】解:(1)∵二次函数y=x2-2x+m的图象与x轴相交于A、B两点则方程x2-2x+m=0有两个不相等的实数根∴b2-4ac>0,∴4-4m>0,解得:m<1;(2)∵点A、B位于原点的两侧则方程x2-2x+m=0的两根异号,即x1x2<0∵∴m<0【点睛】本题考查的是二次函数图象与系数的关系,要求学生对函数基本性质、函数与坐标轴的交点等的求解熟悉,这是一个综合性很好的题目.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论