版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在直角中,,,,若,则()A. B. C. D.2.已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表中数据m的值为()变量x0123变量y35.57A.0.9 B.0.85 C.0.75 D.0.53.执行如图所示的程序框图,若输出的,则①处应填写()A. B. C. D.4.已知集合,,若,则的最小值为()A.1 B.2 C.3 D.45.在平行四边形中,若则()A. B. C. D.6.已知中内角所对应的边依次为,若,则的面积为()A. B. C. D.7.若函数()的图象过点,则()A.函数的值域是 B.点是的一个对称中心C.函数的最小正周期是 D.直线是的一条对称轴8.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是()A. B. C. D.9.已知函,,则的最小值为()A. B.1 C.0 D.10.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是()A. B. C. D.11.已知为抛物线的焦点,点在抛物线上,且,过点的动直线与抛物线交于两点,为坐标原点,抛物线的准线与轴的交点为.给出下列四个命题:①在抛物线上满足条件的点仅有一个;②若是抛物线准线上一动点,则的最小值为;③无论过点的直线在什么位置,总有;④若点在抛物线准线上的射影为,则三点在同一条直线上.其中所有正确命题的个数为()A.1 B.2 C.3 D.412.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}时,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.∅二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,,则__________.14.已知,为正实数,且,则的最小值为________________.15.已知,则满足的的取值范围为_______.16.已知平行于轴的直线与双曲线:的两条渐近线分别交于,两点,为坐标原点,若为等边三角形,则双曲线的离心率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y关于x的回归方程;(3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?附:对于一组数据,,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.18.(12分)已知抛物线的焦点为,点,点为抛物线上的动点.(1)若的最小值为,求实数的值;(2)设线段的中点为,其中为坐标原点,若,求的面积.19.(12分)如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.(1)证明:平面.(2)求直线与平面所成角的正弦值.20.(12分)(选修4-4:坐标系与参数方程)在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)过点且与直线平行的直线交于,两点,求点到,的距离之积.21.(12分)在直角坐标系中,已知圆,以原点为极点,x轴正半轴为极轴建立极坐标系,已知直线平分圆M的周长.(1)求圆M的半径和圆M的极坐标方程;(2)过原点作两条互相垂直的直线,其中与圆M交于O,A两点,与圆M交于O,B两点,求面积的最大值.22.(10分)椭圆:的左、右焦点分别是,,离心率为,左、右顶点分别为,.过且垂直于轴的直线被椭圆截得的线段长为1.(1)求椭圆的标准方程;(2)经过点的直线与椭圆相交于不同的两点、(不与点、重合),直线与直线相交于点,求证:、、三点共线.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
在直角三角形ABC中,求得,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值.【详解】在直角中,,,,,
,
若,则故选C.【点睛】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题.2、A【解析】
计算,代入回归方程可得.【详解】由题意,,∴,解得.故选:A.【点睛】本题考查线性回归直线方程,解题关键是掌握性质:线性回归直线一定过中心点.3、B【解析】
模拟程序框图运行分析即得解.【详解】;;.所以①处应填写“”故选:B【点睛】本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平.4、B【解析】
解出,分别代入选项中的值进行验证.【详解】解:,.当时,,此时不成立.当时,,此时成立,符合题意.故选:B.【点睛】本题考查了不等式的解法,考查了集合的关系.5、C【解析】
由,,利用平面向量的数量积运算,先求得利用平行四边形的性质可得结果.【详解】如图所示,
平行四边形中,,
,,,
因为,
所以
,
,所以,故选C.【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题.向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).6、A【解析】
由余弦定理可得,结合可得a,b,再利用面积公式计算即可.【详解】由余弦定理,得,由,解得,所以,.故选:A.【点睛】本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题.7、A【解析】
根据函数的图像过点,求出,可得,再利用余弦函数的图像与性质,得出结论.【详解】由函数()的图象过点,可得,即,,,故,对于A,由,则,故A正确;对于B,当时,,故B错误;对于C,,故C错误;对于D,当时,,故D错误;故选:A【点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题.8、C【解析】
根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【点睛】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.9、B【解析】
,利用整体换元法求最小值.【详解】由已知,又,,故当,即时,.故选:B.【点睛】本题考查整体换元法求正弦型函数的最值,涉及到二倍角公式的应用,是一道中档题.10、D【解析】
把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率.【详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,∴所求概率为.故选:D.【点睛】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率.11、C【解析】
①:由抛物线的定义可知,从而可求的坐标;②:做关于准线的对称点为,通过分析可知当三点共线时取最小值,由两点间的距离公式,可求此时最小值;③:设出直线方程,联立直线与抛物线方程,结合韦达定理,可知焦点坐标的关系,进而可求,从而可判断出的关系;④:计算直线的斜率之差,可得两直线斜率相等,进而可判断三点在同一条直线上.【详解】解:对于①,设,由抛物线的方程得,则,故,所以或,所以满足条件的点有二个,故①不正确;对于②,不妨设,则关于准线的对称点为,故,当且仅当三点共线时等号成立,故②正确;对于③,由题意知,,且的斜率不为0,则设方程为:,设与抛物线的交点坐标为,联立直线与抛物线的方程为,,整理得,则,所以,则.故的倾斜角互补,所以,故③正确.对于④,由题意知,由③知,则,由,知,即三点在同一条直线上,故④正确.故选:C.【点睛】本题考查了抛物线的定义,考查了直线与抛物线的位置关系,考查了抛物线的性质,考查了直线方程,考查了两点的斜率公式.本题的难点在于第二个命题,结合初中的“饮马问题”分析出何时取最小值.12、B【解析】试题分析:由集合A中的函数y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函数考点:交集及其运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
直接根据集合和集合求交集即可.【详解】解:,,所以.故答案为:【点睛】本题考查集合的交集运算,是基础题.14、【解析】
由,为正实数,且,可知,于是,可得,再利用基本不等式即可得出结果.【详解】解:,为正实数,且,可知,,.当且仅当时取等号.的最小值为.故答案为:.【点睛】本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.15、【解析】
将f(x)写成分段函数形式,分析得f(x)为奇函数且在R上为增函数,利用奇偶性和单调性解不等式即可得到答案.【详解】根据题意,f(x)=x|x|=,则f(x)为奇函数且在R上为增函数,则f(2x﹣1)+f(x)≥0⇒f(2x﹣1)≥﹣f(x)⇒f(2x﹣1)≥f(﹣x)⇒2x﹣1≥﹣x,解可得x≥,即x的取值范围为[,+∞);故答案为:[,+∞).【点睛】本题考查分段函数的奇偶性与单调性的判定以及应用,注意分析f(x)的奇偶性与单调性.16、2【解析】
根据为等边三角形建立的关系式,从而可求离心率.【详解】据题设分析知,,所以,得,所以双曲线的离心率.【点睛】本题主要考查双曲线的离心率的求解,根据条件建立之间的关系式是求解的关键,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)更适宜(2)(3)x为2时,烧开一壶水最省煤气【解析】
(1)根据散点图是否按直线型分布作答;(2)根据回归系数公式得出y关于的线性回归方程,再得出y关于x的回归方程;(3)利用基本不等式得出煤气用量的最小值及其成立的条件.【详解】(1)更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型.(2)由公式可得:,,所以所求回归方程为.(3)设,则煤气用量,当且仅当时取“”,即时,煤气用量最小.故x为2时,烧开一壶水最省煤气.【点睛】本题考查拟合模型的选择,回归方程的求解,涉及均值不等式的使用,属综合中档题.18、(1)的值为或.(2)【解析】
(1)分类讨论,当时,线段与抛物线没有公共点,设点在抛物线准线上的射影为,当三点共线时,能取得最小值,利用抛物线的焦半径公式即可求解;当时,线段与抛物线有公共点,利用两点间的距离公式即可求解.(2)由题意可得轴且设,则,代入抛物线方程求出,再利用三角形的面积公式即可求解.【详解】由题,,若线段与抛物线没有公共点,即时,设点在抛物线准线上的射影为,则三点共线时,的最小值为,此时若线段与抛物线有公共点,即时,则三点共线时,的最小值为:,此时综上,实数的值为或.因为,所以轴且设,则,代入抛物线的方程解得于是,所以【点睛】本题考查了抛物线的焦半径公式、直线与抛物线的位置关系中的面积问题,属于中档题.19、(1)证明见解析(2)【解析】
(1)先证,再证,由可得平面,从而推出平面;(2)建立空间直角坐标系,求出平面的法向量与,坐标代入线面角的正弦值公式即可得解.【详解】(1)证明:连接,,由图1知,四边形为菱形,且,所以是正三角形,从而.同理可证,,所以平面.又,所以平面,因为平面,所以平面平面.易知,且为的中点,所以,所以平面.(2)解:由(1)可知,,且四边形为正方形.设的中点为,以为原点,以,,所在直线分别为,,轴,建立空间直角坐标系,则,,,,,所以,,.设平面的法向量为,由得取.设直线与平面所成的角为,所以,所以直线与平面所成角的正弦值为.【点睛】本题考查线面垂直的证明,直线与平面所成的角,要求一定的空间想象能力、运算求解能力和推理论证能力,属于基础题.20、(1)曲线:,直线的直角坐标方程;(2)1.【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线化为普通方程,再根据将直线的极坐标方程化为直角坐标方程;(2)根据题意设直线参数方程,代入C方程,利用参数几何意义以及韦达定理得点到,的距离之积试题解析:(1)曲线化为普通方程为:,由,得,所以直线的直角坐标方程为.(2)直线的参数方程为(为参数),代入化简得:,设两点所对应的参数分别为,则,.21、(1),(2)【解析】
先求出,再求圆的半径和极坐标方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论