下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省肇庆市培道中学2023年高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(4分)下列函数中,是奇函数,又在定义域内为减函数的是() A. y=()x B. y= C. y=﹣2x3 D. y=log2(﹣x)参考答案:C考点: 函数单调性的判断与证明;函数奇偶性的判断.专题: 计算题;函数的性质及应用.分析: 运用定义和常见函数的奇偶性和单调性,即可判断是奇函数,又在定义域内为减函数的函数.解答: 对于A.为指数函数,没有奇偶性,则A错;对于B.f(﹣x)=﹣f(x),则为奇函数,在x<0,x>0上均为减函数,则B错;对于C.f(﹣x)=﹣f(x),则为奇函数,且y′=﹣6x2≤0,即有减函数,则C对;对于D.定义域为(﹣∞,0),不关于原点对称,则不为奇函数,则D错.故选C.点评: 本题考查函数的奇偶性和单调性的判断,注意运用定义和常见函数的奇偶性和单调性,属于基础题和易错题.2.(5分)的值是() A. 3 B. ﹣3 C. ±3 D. ﹣9参考答案:B考点: 根式与分数指数幂的互化及其化简运算.专题: 计算题;函数的性质及应用.分析: 根据幂的运算法则以及根式化为分数指数幂,进行化简即可.解答: ===﹣3.胡选:B.点评: 本题考查了根式化为分数指数幂的运算问题,也考查了幂的运算法则的应用问题,是基础题目.3.在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样法从中抽取容量为20的样本,则应抽取三级品的个数为()A.2 B.4 C.6 D.10参考答案:D【考点】分层抽样方法.【分析】根据分层抽样每层是按照同一比例抽取得到,得到,求出x的值.【解答】解:设应抽取三级品的个数x,据题意有,解得x=10,故选D.4.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是(
)A.平均数为10,方差为2
B.平均数为11,方差为3
C.平均数为11,方差为2
D.平均数为12,方差为4参考答案:C5.已知函数,若f(x0)=2,则x0=()A.2或﹣1 B.2 C.﹣1 D.2或1参考答案:A【考点】函数的值.【分析】利用分段函数性质求解.【解答】解:∵函数,f(x0)=2,∴x0≤0时,,解得x0=﹣1;x0>0时,f(x0)=log2(x0+2)=2,解得x0=2.∴x0的值为2或﹣1.故选:A.6.下列函数中,在上为减函数的是
(
)A.
B.
C.
D.参考答案:D略7.若正方体的外接球的体积为,则球心到正方体的一个面的距离为
(
)A.1
B.2
C.3
D.4 参考答案:A8.y=sin(2x﹣)﹣sin2x的一个单调递增区间是()A.[﹣,]B.[,π]C.[π,π]D.[,]参考答案:B【考点】两角和与差的正弦函数.【分析】化简可得y=﹣sin(2x+),由2kπ+≤2x+≤2kπ+解不等式可得函数的所有单调递增区间,取k=0可得答案.【解答】解:化简可得y=sin(2x﹣)﹣sin2x=sin2x﹣cos2x﹣sin2x=﹣(cos2x+sin2x)=﹣sin(2x+),由2kπ+≤2x+≤2kπ+可得kπ+≤x≤kπ+,由于k∈Z,故当k=0时,函数的一个单调递增区间为[,]故选:B9.若是第一象限角,则,,中一定为正值的有(
)A.3个
B.2个
C.1个
D.0个参考答案:B10.已知函数则函数y=f[f(x)]+1的零点个数是(
)A.4 B.3 C.2 D.1参考答案:A【考点】函数的零点与方程根的关系.【专题】计算题;压轴题.【分析】由已知中函数我们可以求出函数y=f[f(x)]+1的解析式,令y=0,我们可以分别求出方程f[f(x)]+1=0的根,进而得到其零点的个数【解答】解:由函数可得由,故函数y=f[f(x)]+1共4个零点,故选A.【点评】本题考查的知识点是函数的零点,与方程根的关系,其中根据已知中函数Y=f(x)的解析式,求出函数y=f[f(x)]+1的解析式,是解答本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.方程的实数解的个数为
。参考答案:2略12.若,则下列不等式对一切满足条件的恒成立的是
。①
②
③
④
⑤参考答案:①③④
13.的值为
.参考答案:略14.已知函数y=sin()(ω>0)是区间[,π]上的增函数,则ω的取值范围是.参考答案:(0,]【考点】正弦函数的图象.【分析】可以通过角的范围[,π],得到(ωx+)的取值范围,直接推导ω的范围即可.【解答】解:由于x∈[π,π],故(ωx+)∈[ω+,πω+],∵函数f(x)=sin(ωx+)(ω>0)在[,π]上是增函数,∴,∴0<ω≤,故答案为:(0,].【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.15.如图,是三个边长为2的等边三角形,且有一条边在同一直线上,边上有2个不同的点P1,P2,则__________.参考答案:3616.已知函数的值域为,则实数的取值范围是________.参考答案:17.已知,则=
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)在如下图所示的程序框图中,当输入实数x的值为4时,输出的结果为2;当输入实数x的值为-2时,输出的结果为4.(l)求实数a,b的值,并写出函数的解析式;(Ⅱ)若输出的结果为8,求输入的x的值参考答案:19.(14分)如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.参考答案:考点: 直线与平面垂直的性质;直线与平面平行的判定.专题: 综合题;空间位置关系与距离.分析: (1)利用勾股定理的逆定理可得AC⊥BC.利用线面垂直的性质定理可得CC1⊥AC,再利用线面垂直的判定定理即可证明结论;(2)利用直三棱柱的性质、正方形的性质、三角形的中位线定理即可得出ED∥AC1,再利用线面平行的判定定理即可证明结论解答: 证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B的中点,又∵D为AB的中点,∴DE为△BAC1的中位线.∴AC1∥DE又∵DE?平面CDB1,AC1?平面CDB1∴AC1∥平面CDB1.点评: 熟练掌握勾股定理的逆定理、线面垂直的判定和性质定理、直三棱柱的性质、正方形的性质、三角形的中位线定理、线面平行的判定定理是解题的关键.20.从含有两件正品a1,a2和一件次品b的三件产品中每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有结果;(2)设A为“取出两件产品中恰有一件次品”,写出事件A;(3)把“每次取出后不放回”这一条件换成“每次取出后放回”,其余不变,请你回答上述两个问题.参考答案:(1)这个试验的所有可能结果Ω={(a1,a2),(a1,b),(a2,b),(a2,a1),(b,a1),(b,a2)}.(2)A={(a1,b),(a2,b),(b,a1),(b,a2)}.(3)①这个试验的所有可能结果Ω={(a1,a1),(a1,a2),(a1,b),(a2,a1),(a2,a2),(a2,b),(b,a1),(b,a2),(b,b)}.②A={(a1,b),(a2,b),(b,a1),(b,a2)}.21.函数是定义在(-1,1)上的奇函数,且。(1)确定函数的解析式;(2)解不等式:参考答案:.解:(1)依题意可得
(2)略22.设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2}.(1)求实数a、b的值及集合A、B;(2)设全集U=A∪B,求(?UA)∪(?UB).参考答案:【考点】交、并、补集的混合运算.【专题】集合.【分析】(1)根据条件求出a,b的值,然后求出集合A,B的元素,(2)结合集合的基本运算即可得到结论.【解答】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工商银行借款合同
- 2024年视力保健用品项目评估分析报告
- 2024至2030年中国大便阀接牙行业投资前景及策略咨询研究报告
- 2024至2030年中国防水式活动法兰热电阻行业投资前景及策略咨询研究报告
- 2024至2030年中国白麻板材数据监测研究报告
- 2024至2030年中国喷砂抛光珠数据监测研究报告
- 近代自然科学(19世纪前后)
- 湖南省邵阳市(2024年-2025年小学五年级语文)统编版竞赛题(上学期)试卷及答案
- 中医药治疗房颤
- 传媒账号签约合同模板
- 2024年学校柔性引进专家聘用合同
- 医学专题-4双相障碍
- 脑出血一病一品
- 甲状腺消融术护理查房
- 人工智能大学生生涯规划
- 中医生活起居护理-疏仁丽
- 2024年甘肃省普通高中信息技术会考试题(含24套)
- 外贸公司管理制度
- 庄园推广策划方案
- 子路曾皙冉有公西华侍坐教案
- 《冬季鸡舍通风》课件
评论
0/150
提交评论