因子分析与回归分析案例演示_第1页
因子分析与回归分析案例演示_第2页
因子分析与回归分析案例演示_第3页
因子分析与回归分析案例演示_第4页
因子分析与回归分析案例演示_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Q型因子分析典型案例市场研究中的顾客偏好分析案例背景:某汽车制造商在竞争对手中选择了17种车型,访问了25个顾客,要求他们根据自身偏好对17种车型打分。打分范围0-9.9,9.9表示最高程度的偏好。变量(V1-V25),样本为17种车型第1页/共16页第一页,共17页。图117种车型主成分分数散点图第2页/共16页第二页,共17页。结论数据信息挖掘:将两种散点图的坐标原点对齐,经过透明处理,更易得出结论。由图1(车型视角)可知,第一主成分反映了车的产地,分数最高是DL点(沃尔沃),最低的是P点(福特)。横坐标右端多为欧洲车和日本车,左端多为美国车,说明顾客偏好欧洲车和日本车的倾向高于美国车。第二主成分反映了车的特性:质量、动力、空间等。分数高的是CO(林肯)、E(卡迪拉克),分数低的为P(福特)、CH(雪弗兰),说明顾客偏好高质量车。第3页/共16页第三页,共17页。图225个顾客的主成分分数散点图第4页/共16页第四页,共17页。图2(顾客视角)箭头指向相同表示偏好相同,指向相近表示偏好相近。与图1联合分析、进行视角叠加可知:①箭头指向第二象限(左上方)的顾客偏好大型豪华美国车;②箭头指向第四象限的较密集,说明这些顾客偏好日本和欧洲车;第5页/共16页第五页,共17页。③第三象限的箭头很少,说明顾客中偏好美国小型车的很少;④第一象限箭头较多,但对应图1第一象限车很少。这预示着新车型产品市场或该汽车生产商的主要竞争对手没有相应产品,而这也标明了新产品开发的方向:高质量、豪华大型的欧洲、日本车。第6页/共16页第六页,共17页。回归分析案例演示

案例:购买可能性与原始价值、附加价值的关系分析回归分析的检验主要有三大方面:第一方面是经济学意义的检验,即所提出模型的系数的正负是否符合经济学意义的常规,即系数的正负能否从经济学角度给出一个合理的解释。第二方面是统计学意义的检验,主要有F检验、T检验和R2系数的检验。第三方面是计量经济学检验,主要包括异方差性检验、共线性检验(VIF检验)和序列相关性检验(DW检验)。只有通过全部的检验,回归分析的结果才可靠有效,建立的模型才经得起推敲。第7页/共16页第七页,共17页。调整的R2=0.806,说明回归方程对样本数据点的拟合优度较高,即回归方程对样本数据的代表程度较强,通过拟合优度检验。由于建模的样本数据是横截面数据,因而不存在序列相关性,不用进行DW检验。

第8页/共16页第八页,共17页。模型2中,F统计量的观测值为65.563,对应的概率P值近似为0。若显著性水平为0.05时,概率P值小于显著性水平应拒绝回归方程显著性检验的原假设,认为各回归系数不同时为0,被解释变量与解释变量全体的线性关系是显著的,可以建立线性模型,也同时说明回归方程通过了显著性检验。

第9页/共16页第九页,共17页。所有解释变量回归系数的显著性t检验的概率P值都小于显著性水平,通过了回归系数的显著性检验,它们与被解释变量的线性关系是显著的,应该保留在回归方程中。容忍度和方差膨胀因子均为1,说明各解释变量之间不存在多重共线性问题。

Y=0.747*X2+0.511*X1

第10页/共16页第十页,共17页。模型自变量前的系数均为正数,符合两个自变量与因变量逻辑上的正相关关系,系数大小也比较符合经济学常规,通过经济学意义的检验附加价值前面的系数大于原始价值,说明产品或服务的附加价值对消费者购买可能性的影响更为显著。企业应在提升产品或服务的附加值上多下功夫,才能事半功倍。第11页/共16页第十一页,共17页。残差分析残差分析是回归方程检验中的重要组成部分,如果回归方程能够较好的反映被解释变量的特征和变化规律,那么残差序列中应不包含明显的规律性和趋势性。残差分析主要包括:残差是否服从均值为0、等方差的正态分布,残差序列是否独立、借助残差探测样本中的异常值。第12页/共16页第十二页,共17页。(1)残差的正态分布检验残差总体符合均值为0的正态分布,符合线性回归残差的要求。根据统计学3⊿准则,标准化残差值的绝对值大于3的观察值为异常值。根据标准残差的直方图,所有标准化残差值的绝对值均小于3。因此,不存在异常值。

第13页/共16页第十三页,共17页。(2)残差的异方差检验通过各解释变量与标准化残差的Spearman等级相关分析,得到下表:X1与标准化残差的相关系数为-0.077,sig=0.682>0.05;X2与标准化残差的相关系数为-0.176,sig=0.344>0.05。可见,检验并不显著,因而认为异方差现象并不明显。第14页/共16页第十四页,共17页。经过以上检验,所建回归模型才真正成立,经得起推敲。可见,建模过程与检验过程同样重要,不可偏颇,切不可重建模轻检验。第15页/共16页第十五页,共17页。感谢您的观看。第16页/共16页第十六页,共17页。内容总结Q型因子分析典型案例。将两种散点图的坐标原点对齐,经过透明处理,更易得出结论。只有通过全部的检验,回归分析的结果才可靠有效,建立的模

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论