德州陵城区五校联考2022-2023学年中考冲刺卷数学试题含解析_第1页
德州陵城区五校联考2022-2023学年中考冲刺卷数学试题含解析_第2页
德州陵城区五校联考2022-2023学年中考冲刺卷数学试题含解析_第3页
德州陵城区五校联考2022-2023学年中考冲刺卷数学试题含解析_第4页
德州陵城区五校联考2022-2023学年中考冲刺卷数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人数据“5657万”用科学记数法表示为A. B. C. D.2.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.403.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为()A. B. C. D.4.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:15.一元二次方程4x2﹣2x+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判断6.函数的图像位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若a+b=3,,则ab等于()A.2 B.1 C.﹣2 D.﹣18.已知,则的值是A.60 B.64 C.66 D.729.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的()A.中位数相等B.平均数不同C.A组数据方差更大D.B组数据方差更大10.如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点ED在AC同侧,若∠CAE=118°,则∠B的大小为()A.31° B.32° C.59° D.62°二、填空题(共7小题,每小题3分,满分21分)11.化简二次根式的正确结果是_____.12.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为________.(用含n的代数式表示,其中n为正整数)13.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.14.如图,要使△ABC∽△ACD,需补充的条件是_____.(只要写出一种)15.北京奥运会国家体育场“鸟巢”的建筑面积为258000平方米,那么258000用科学记数法可表示为.16.若二次函数y=-x2-4x+k的最大值是9,则k=______.17.如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是________.三、解答题(共7小题,满分69分)18.(10分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;(2)若加工童装一件可获利80元,加工成人装一件可获利120元,那么该车间加工完这批服装后,共可获利多少元.19.(5分)已知,关于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求m的值.20.(8分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.21.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.22.(10分)已知,关于x的一元二次方程(k﹣1)x2+x+3=0有实数根,求k的取值范围.23.(12分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.24.(14分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】解:5657万用科学记数法表示为,

故选:C.【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.2、B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.考点:规律型:图形变化类.3、B【解析】

如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,

NE的长,EF的长,则可求sin∠AFG的值.【详解】解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.

∵四边形ABCD是菱形,AB=4,∠DAB=60°,

∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB

∴∠HDE=∠DAB=60°,

∵点E是CD中点

∴DE=CD=1

在Rt△DEH中,DE=1,∠HDE=60°

∴DH=1,HE=

∴AH=AD+DH=5

在Rt△AHE中,AE==1

∴AN=NE=,AE⊥GF,AF=EF

∵CD=BC,∠DCB=60°

∴△BCD是等边三角形,且E是CD中点

∴BE⊥CD,

∵BC=4,EC=1

∴BE=1

∵CD∥AB

∴∠ABE=∠BEC=90°

在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.

∴EF=由折叠性质可得∠AFG=∠EFG,

∴sin∠EFG=sin∠AFG=,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.4、B【解析】

可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.5、B【解析】

试题解析:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有两个相等的实数根.故选B.考点:根的判别式.6、D【解析】

根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【详解】解:函数的图象位于第四象限.故选:D.【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.7、B【解析】

∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故选B.考点:完全平方公式;整体代入.8、A【解析】

将代入原式,计算可得.【详解】解:当时,原式,故选A.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.9、D【解析】

分别求出两组数据的中位数、平均数、方差,比较即可得出答案.【详解】A组数据的中位数是:4,平均数是:(2+3+4+5+6)÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]÷5=2;B组数据的中位数是:3,平均数是:(1+7+3+0+9)÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2]÷5=12;∴两组数据的中位数不相等,平均数相等,B组方差更大.故选D.【点睛】本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键.10、A【解析】

根据等腰三角形的性质得出∠B=∠CAB,再利用平行线的性质解答即可.【详解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°−118°,解得:∠B=31°,故选A.【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出∠B=∠CAB.二、填空题(共7小题,每小题3分,满分21分)11、﹣a【解析】,..12、【解析】试题解析:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵,∴,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴Sn=.故答案为.13、或﹣.【解析】

试题分析:当点F在OB上时,设EF交CD于点P,可求点P的坐标为(,1).则AF+AD+DP=3+x,CP+BC+BF=3﹣x,由题意可得:3+x=2(3﹣x),解得:x=.由对称性可求当点F在OA上时,x=﹣,故满足题意的x的值为或﹣.故答案是或﹣.【点睛】考点:动点问题.14、∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB【解析】试题分析:∵∠DAC=∠CAB∴当∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时,△ABC∽△ACD.故答案为∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB.考点:1.相似三角形的判定;2.开放型.15、2.58×1【解析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.258000=2.58×1.16、5【解析】y=−(x−2)2+4+k,∵二次函数y=−x2−4x+k的最大值是9,∴4+k=9,解得:k=5,故答案为:5.17、π【解析】

取的中点,取的中点,连接,,,则,故的轨迹为以为圆心,为半径的半圆弧,根据弧长公式即可得轨迹长.【详解】解:如图,取的中点,取的中点,连接,,,∵在等腰中,,点在以斜边为直径的半圆上,∴,∵为的中位线,∴,∴当点沿半圆从点运动至点时,点的轨迹为以为圆心,为半径的半圆弧,∴弧长,故答案为:.【点睛】本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.三、解答题(共7小题,满分69分)18、(1)该车间应安排4天加工童装,6天加工成人装;(2)36000元.【解析】

(1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;(2)利用(1)中所求,分别得出两种服装获利即可得出答案.【详解】解:(1)设该车间应安排x天加工童装,y天加工成人装,由题意得:,解得:,答:该车间应安排4天加工童装,6天加工成人装;(2)∵45×4=180,30×6=180,∴180×80+180×120=180×(80+120)=36000(元),答:该车间加工完这批服装后,共可获利36000元.【点睛】本题考查二元一次方程组的应用.19、(1)证明见解析;(2)m=2或m=1.【解析】

(1)由△=(-m)2-4×1×(m2-1)=4>0即可得;(2)将x=2代入方程得到关于m的方程,解之可得.【详解】(1)∵△=(﹣m)2﹣4×1×(m2﹣1)=m2﹣m2+4=4>0,∴方程有两个不相等的实数根;(2)将x=2代入方程,得:4﹣2m+m2﹣1=0,整理,得:m2﹣8m+12=0,解得:m=2或m=1.【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.20、这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).所以△AGF∽△EHF.因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得,即,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.21、(1)见解析;(2)见解析;【解析】

(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.22、0≤k≤且k≠1.【解析】

根据二次项系数非零、被开方数非负及根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可求出k的取值范围.【详解】解:∵关于x的一元二次方程(k﹣1)x2+x+3=0有实数根,∴2k≥0,k-1≠0,Δ=()2-43(k-1)≥0,解得:0≤k≤且k≠1.∴k的取值范围为0≤k≤且k≠1.【点睛】本题考查了根的判别式、二次根式以及一元二次方程的定义,根据二次项系数非零、被开方数非负及根的判别式△≥0,列出关于k的一元一次不等式组是解题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.23、(1),;(2)点的坐标为;(3)点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论