




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全等三角形知识回顾:一般三角形
全等的条件:1.定义(重合)法;2.SSS;3.SAS;4.ASA;5.AAS.直角三角形全等特有的条件:HL.包括直角三角形不包括其它形状的三角形解题中常用的4种方法分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角
。例题精析:分析:本题利用边角边公理证明两个三角形全等.由题目已知只要证明AF=CE,∠A=∠C例2如图2,AE=CF,AD∥BC,AD=CB,求证:
说明:本题的解题关键是证明AF=CE,∠A=∠
C,易错点是将AE与CF直接作为对应边,而错误地写为:
又因为AD∥BC,(?)(?)
分析:已知△ABC≌△A1B1C1
,相当于已知它们的对应边相等.在证明过程中,可根据需要,选取其中一部分相等关系.例3已知:如图3,△ABC≌△A1B1C1,AD、A1D1分别是△ABC和△A1B1C1的高.求证:AD=A1D1图3证明:∵△ABC≌△A1B1C1(已知)∴AB=A1B1,∠B=∠B1(全等三角形的对应边、对应角相等)∵AD、A1D1分别是△ABC、△A1B1C1的高(已知)∴∠ADB=∠A1D1B1=90°.
在△ABC和△A1B1C1中∠B=∠B1(已证)∠ADB=∠A1D1B1(已证)
AB=A1B(已证)∴△ABC≌△A1B1C(AAS)∴AD=A1D1(全等三角形的对应边相等)说明:本题为例2的一个延伸题目,关键是利用三角形全等的性质及判定找到相等关系.类似的题目还有角平分线相等、中线相等.说明:本题的解题关键是证明
,易错点是忽视证OE=OF,而直接将证得的AO=BO作为证明
的条件.另外注意格式书写.分析:AB不是全等三角形的对应边,但它通过对应边转化为AB=CD,而使AB+CD=AD-BC,可利用已知的AD与BC求得。说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。例6:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。已知:如图,在Rt△ABC、Rt△
中,∠ACB=∠
=Rt∠,BC=
,
CD⊥AB于D,
⊥
于
,CD=
求证:Rt△ABC≌Rt△证明:在Rt△CDB和Rt△
中
∴Rt△CDB≌Rt△
(HL)由此得∠B=∠
在△ABC与△
中
∴△ABC≌△
(ASA)说明:文字证明题的书写格式要标准。1.如图1:△ABF≌△CDE,∠B=30°,∠BAE=∠DCF=20°.求∠EFC的度数.练习题:2、如图2,已知:AD平分∠BAC,AB=AC,连接BD,CD,并延长相交AC、AB于F、E点.则图形中有(
)对全等三角形.A、2
B、3
C4
D、5C(800)3、如图3,已知:△ABC中,DF=FE,BD=CE,AF⊥BC于F,则此图中全等三角形共有(
)
A、5对B、4对C、3对D2对
4、如图4,已知:在△ABC中,AD是BC边上的高,AD=BD,DE=DC,延长BE交AC于F,求证:BF是△ABC中边上的高.
提示:关键证明△ADC≌△BFCB
5、如图5,已知:AB=CD,AD=CB,O为AC任一点,过O作直线分别交AB、CD的延长线于F、E,求证:∠E=∠F.提示:由条件易证△ABC≌△CDA从而得知∠BAC=∠DCA,即:AB∥CD.6、如图6,已知:∠A=90°,AB=BD,ED⊥BC于D.求证:AE=ED
提示:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四年级下美术教学设计-光的魅力-人教新课标
- 本土文化的地理特色试题及答案
- 咽峡炎的护理查房
- 水资源综合利用规划计划
- 行业新规对工作的影响计划
- 增加中小学生阅读活动计划
- 学校美术补习班开设方案计划
- 借助社交媒体增强品牌互动计划
- 生物学习动机的激发策略计划
- 转型升级中的生产管理挑战计划
- 2025年国家公务员录用考试公共基础知识预测押题试卷及答案(共七套)
- 2025-2030中国儿童服装行业市场发展分析及投资前景预测研究报告
- 部编版语文教材培训讲座-口语交际
- 2025年全国中小学生安全教育日专题
- 2025年工程力学笔试试题及答案
- 2025年电子设备装接工岗位职业技能资格证考试题(附答案)
- 2025年河南航空港发展投资集团有限公司社会招聘45人笔试参考题库附带答案详解
- 企业一季一课安全教育记录(2篇)
- 2025-2030年中国工业废水处理产业十三五发展规划及战略规划分析报告
- DB37T 5157-2020 住宅工程质量常见问题防控技术标准
- 烟气超低排放改造和增设脱硝项目资金申请报告写作模板定制
评论
0/150
提交评论