




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
报告内初值问题求解非标准的RH方初边值求解Fokas方长时间渐近行为RH方法/Deift-Zhou非线性速降RH方法/Deift-Zhou非线性速降四、随机矩阵与RH方法/Deift-Zhou非线性速降五、聚焦NLS初值问题解的长时间渐近Riemann-Hilbert问题与Riemannmonodromy问题有关,1851年,首先由Riemann引入.1900年,在国际数学家大会上,Hilbert将Riemannmonodromy归为现今流行的Riemann-Hilbert问题,即Hilbert所提23个问题的第21问题:具有给定奇点和单值群的Fuchs类线性微分方解的存在性
dy i1x1908年,Plemelj将Riemann-Hilbert问题转化为奇异积分方程问 ,Bliru在解决Riemann-Hibe问题RHP学的强有力的分析工具Riem-Hileei-u非线性速降法Riemann-Hilbert方法在可积系统中的最大受益者:非线性程初值问题解的整体渐近分 RiemanHile粗略地讲,Riemann-Hilbert问题就是在复平面上寻找一个在定曲线上具有特Beals-Cofiman理论:Riemann-HilbertProblem可解 YangJianke, 关的1+1维和2 J.Lenells,TheDegasperis-Procesiequationonthehalf-line, .(2013),122--XuJian,FanEngui,TheunifiedmethodfortheSasa-Satsumaequationonhalf-line,ProcRoyalSocA, JianXu,EnguiFan,Thethree-waveequationonthehalf-line,PhysicsLettersA378AS.UniversityofBoundaryValueProblems、InverseProblemsysis、FluidMechanics、Complex ysis、orthogonalpolynomialsandrandommatricesAblowitzandASFokas,IntroductionandApplicationsofComplexVariables,CambridgeUniversityPress,(2003).Transcendents:ARiemman-HilbertApproach,AMSMemberoftheEditorialProceedingsoftheRoyalSociety(SeriesSelectaJournalofMathematicalStudiesinAppliedJournalofNonlinear代TheDavey-StewartsonontheHalf-Plane,Comm.Math.Phys.289,957-993IntegrableNonlinearEvolutionPDEsin4+2and3+1Dimensions,Phys.Rev.Lett.96,190201(2006)AGeneralisedDirichlet annMapforCertainNonlinearEvolutionComm.PureAppl.Math.LVIII,639-670Thelong-timeasymptoticsofmovingboundaryproblemsusinganEhrenpreis-typerepresentationanditsRiemann-Hilbertnonlinearisation,Comm.PureAppl.Maths56,517-548(2002).IntegrableNonlinearEvolutionEquationsontheHalf-Line,Comm.Math.Phys.230,1-39(2002).InteractionofLumpswithaLineSolitonfortheDSIIEquation,PhysicaD152-153,189-198(2001). 获得很大发展。充分利用可积性质,不仅对大初值,而且解的渐进估计也可用精确的70年代末,Manakov,Shabat,Zakharov等借助反散射方法首先考虑积发展方程的长时间 1981年,Its首先将stationaryphase思想用于RHP研究这种RHP的。 1993年,受经典速降法和Its工作的启发,Deift,Zhou直接考虑RHP,通过形变路径,获取可积系统严格精确解的long-time性质。Deift;X.Zhou,AsteepestdescentmethodforoscillatoryRiemann–Hilbertproblems.AsymptoticsfortheMKdVequation,AnnalsofMath.137(1993),295-368(74pages)1992年,FokasIts首次建立了正交多项式与RHP的联系,为RH方法研究正交 1999年,结合Fokas,Its正交多项式的RHP刻画,Deift,Bleher,McLaughlin等开正交多项式渐近分析的全新研究方法(CPAM,1999)。2000年代BaikDeift,Johansson将Riemann-Hilbert方法应用于组合学中随机排,题 Universalityformathematicalandphysicalsystems,arxiv: 2someopenproblemsinrandommatrixtheoryandthetheoryofintegralesystems,arXiv:0712.0849v1PercyA.Deift,September,1945,CourantInstitute,NewYorkMemberoftheU.S.NationalAcademyof研究方向spectraltheory,integrablesystems,randommatrix1997,NSFSpecialCreativity1998,winnerofthePólya1998,aninvitedaddressattheInternationalCongressofMathematiciansinBerlin2003, sonLectureattheGeorgiaInstituteof2006,aplenaryaddressattheInternationalCongressofMathematiciansinMadrid专Directandinversescatteringonline, Orthogonalpolynomialsandrandommartries:ARiemann-Hilbertapproach,AMS, Universality,AMS,2009DeiftPercy;ItsAlexander;ToeplitzMatricesandToeplitzDeterminantsundertheImpetusoftheIsingModel:SomeHistoryandSomeRecentResults,CommPureApplMathVol.LXVI,1360–1438(2013)(88pages)DeiftPercy;ItsAlexander;KrasovskyIcor,AsymptoticsofToeplitz,Hankel,andToeplitzplusHankeldeterminantswithFisher-HartwigsingularitiesAnnalsofMath.174(2011):1243-1299DeiftPA;ItsAR;ZhouX,ARiemann-Hilbertapproachtoasymptoticproblemsarisinginthetheoryofrandommatrixmodels,andalsointhetheoryofintegrablestatisticalmechanics,AnnalsofMath.146(1997),149-235(88pages)P.Deift;X.Zhou,Asteepestdescentmethodforoscillatoryproblems.AsymptoticsfortheMKdVequation,AnnalsofMath.137(1993),JinhoBaik,PercyDeift,KurtJohanssonReviewed,Onthedistributionofthelengthofthelongestincreasingsubsequenceofrandompermutations,J.Am.MathSoc.12(1999):1119-1178DeiftP;KriecherbauerT;McLaughlinKTR,Strongasymptoticsoforthogonalpolynomialswithrespecttoexponentialweights,Commun.Math.Phys.AlexanderR.naUniversity-研究Algebro-geometricsolutions、differentialoperatorsspecialfunctions,orthogonalpolynomialsandrandommatrices1981LeningradMathematicalSociety2002HardyFellowoftheLondonMathematical2010,invitedspeakers,theInternationalCongressofMathematicians,Hyderabad,presentationAsymptotic ysisoftheToeplitzandHankeldeterminantsviatheRiemann-Hilbertmethod‖代ARiemann-HilbertApproachtoAsymptoticProblemsArisingintheTheoryofRandomMatrixModels,andAlsointheTheoryofIntegrableStatisticalMechanics,AnnalsofMath.146,149-235(1997).Semiclassicalasymptoticsoforthogonalpolynomials,Riemann-Hilbertuniversalityinthematrixmodel,AnnalsofMath,150(1999),185- ToeplitzMatricesandToeplitzDeterminantsundertheImpetusoftheIsingModel:SomeHistoryandSomeRecentResults,CommPureApplMathVol.LXVI,1360–1438(2013)Higherorder oguesoftheTracy-WidomdistributionandthePainleveIIhierarchy,Comm.Pure.Appl.Math.LXIII(2010),362-412DoubleScalingLimitintheRandomMatrixModel:theRiemann-HilbertApproach,PureApplMath,Vol.LVI,(2003)433–AsymptoticsoftheAiry-kerneldeterminant,Comm.Math.Phy.,278(2008),643-Entanglemententropyinquantumspinchainswithfiniterangeinteraction,Comm.Math.284(2008),117-Temperaturecorrelationofquantumspins,PhysRevLett70(1993):1704-我们的工作 XuJian,FanEngui,ChenYong,Long-timeasymptoticforthederivativenonlinearSchrodingerequationwithstep-likeinitialvalue,MathPhysGeom,16(2013),253-288XuJian,FanEngui,Leading-ordertemporalasymptoticoftheLenellsequationwithoutsolitons.JDiffEqus,XuJian,FanEngui,Long-timeasymptoticforthederivativeSchrodingerequationwithdecayinginitialvalue,XiaoYu,FanEngui,ARiemann-HilbertapproachtotheHarry-Dymequationontheline,submitted1835年,Murphy首先给出经典正交函1855年,Chebyshev受Fourier级数 近论影响,研究了二Chebyshev多项式,开启了正交多项式研19-20世纪是正交多项式理论和应用著近20年,人们发现概率统交多项式刻画、归结BarryApril1946PrincetonCaliforniaInstituteof研究方向MathematicsandTheoreticalSpectral OrthogonalQuantummechanics,quantumfieldElectricandmagneticAtomicandmolecularStatisticalBrownian著作MethodsofModernMathematicalPhysics,I-IV:AcademicPress,Functionalintegrationandquantumphysics,AcademicPress,SchrodingerOperators:withApplicationtoQuantumMechanicsandGlobalGeometry,Springer-Verlag,1987Representationoffiniteandcompactgroup,AMS,Statisticalmechanicsandlattice,PrincetonUniversityPress,Traceidealandapplications,AMS, yticviewpoint,CambridgeUniversityPress,Szegö'sTheoremanditsDescendants:SpectralTheoryforL2PerturbationsofOrthogonalPolynomials,PrincetonUniversityPress,代Operatorswithsingularcontinuousspectrum:I.Generaloperators,AnnalsofMath.141(1995),131-145 ysisoflowlyingeigenvalues,II.Tunneling,AnnalsofMath.120(1984),89-118TheP(φ)2quantumtheoryasclassicalstatisticalmechanics,Annals ysisofmultiparticleSchrödingeroperators,Annalsof114(1981),519-BrownianmotionandHarnack'sinequalityforSchrödingerCommun.PureAppl.Math35(1982),209-Infraredbounds,phasetransitionsandcontinuoussymmetryCommun.Math.Phys.50(1976),79-TheThomas-Fermitheoryofatoms,moleculesandsolids,AdvancesMath.23(1977),22-116Holonomy,thequantumadiabatictheoremandBerry'sphase,Phys.Lett.51(1983),随机矩阵,即取矩阵值的随量,随机矩阵理论之所以能够成为许多领域研究 金融研究中,不 Pavelstatisticalphysics,quantumintegrablesystems,theoryofrandompolynomials,andrandommatrixmodels代Semiclassicalasymptoticsoforthogonalpolynomials,Riemann-Hilbertproblem,anduniversalityinthematrixmodel.Ann.ofMath.(2)150(1999),no.1,185–266.UniversalityandscalingofcorrelationsbetweenzerosoncomplexInvent.Math.142(2000),no.2,Doublescalinglimitintherandommatrixmodel:theRiemann-Hilbertapproach.Comm.PureAppl.Math.56(2003),no.4,433–516.Exactsolutionofthesix-vertexmodel wallboundaryantiferroelectricphase.Comm.PureAppl.Math.63(2010),no.6,Randommatrixmodelwithexternalsourceandaconstrainedequilibriumproblem.Comm.PureAppl.Math.64(2011),no.1,OrthogonalpolynomialsinthenormalmatrixmodelwithacubicpotentialAdv.Math.230(2012),LargenlimitofGaussianrandommatriceswithexternalsourceI,Math.Phys.252(2004),no.1-3,M.BrandeisMatrixintegrals、ProbabilityRandomtheory、 yintegrableMAdler,Hermitian,symmetricandsymplecticrandomensembles:PDE'sfordistributionofthespectrum,AnnalsofMath,153(2001),149--MAdler,Thespectrumofcoupledrandommatrices,AnnalsofMath,921--MAdler,ThecomplexgeometryoftheKowalewski- ysis.Math.97(1989),3—MAdler,TheTodalattice,Dynkindiagrams,singularitiesandabelianInvent.Math.103(1991),223—IMAdler,ntegralsoverclassicalgroups,randompermutations,TodaToeplitzlattices.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 借款合同范本中介版
- 云南购房合同范本
- 从化学校食堂承包合同范本
- 保洁公司人员合同范本
- pu线条安装合同范本
- fob合同范本日文
- 包架子合同范本
- 公司代管合同范本
- 共同经营餐厅合同范本
- 三方合作民宿协议合同范本
- 民间借贷利息计算表
- 2025届江苏省十三大市高三冲刺模拟历史试卷含解析
- 小学数学二年级《数图形》练习题
- 初中语文八年级下册 4《灯笼》公开课一等奖创新教案
- RBA商业道德程序文件(系列)
- 某山体滑坡综合治理工程监理规划
- 辽宁省大连市2023-2024学年八年级下学期第一次月考语文试题(含答案解析)
- DataOps 实践指南 2.0白皮书
- 供电所班组建设方案
- 委托处置不良资产协议(三篇)
- 胎膜早破的诊断与处理指南
评论
0/150
提交评论