下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市双头中学2022-2023学年高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数y=+1的图象关于y轴对称的图象大致是()
参考答案:C略2.对于△ABC,若存在△A1B1C1,满足,则称△ABC为“V类三角形”.“V类三角形”一定满足(
).A.有一个内角为30° B.有一个内角为45°C.有一个内角为60° D.有一个内角为75°参考答案:B【分析】由对称性,不妨设和为锐角,结合同角三角函数关系进行化简求值即可.【详解】解:由对称性,不妨设和为锐角,则A,B,所以:+=π﹣(A+B)=C,于是:cosC=sin=sin(+)=sinC,即:tanC=1,解得:C=45°,故选:B.【点睛】本题主要考查三角函数的化简求值,注意新定义运算法则,诱导公式的应用,属于中档题.3.在空间直角坐标系中,点关于平面对称的点的坐标是(
)A.
B.
C.
D.参考答案:A略4.若sin2x>cos2x,则x的取值范围是()A.{x|2kπ﹣<x<2kπ+,k∈Z} B.{x|2kπ+<x<2kπ+,k∈Z}C.{x|kπ﹣<x<kπ+,k∈Z} D.{x|kπ+<x<kπ+,k∈Z}参考答案:D【考点】HA:余弦函数的单调性.【分析】利用二倍角的余弦公式可得cos2x<0,所以,+2kπ<2x<+2kπ,k∈Z,从而得到x的范围.【解答】解:由sin2x>cos2x得cos2x﹣sin2x<0,即cos2x<0,所以,+2kπ<2x<+2kπ,k∈Z,∴kπ+<x<kπ+,k∈Z,故选D.5.已知全集,集合,,则集合
(
)A.
B.
C.
D.参考答案:C6.已知函数且,则下列说法错误的是(
)A.函数的图象是中心对称图形
B.函数在上是增函数C.函数是非奇非偶函数
D.方程没有实数根参考答案:D7.下列函数中,在区间上是增函数的是(
)A.
B.
C.
D.
参考答案:A8.下列函数中,周期为π,且在(,)上单调递减的是()A.y=sinxcosx B.y=sinx+cosx C.y=tan(x+) D.y=2cos22x﹣1参考答案:A【考点】三角函数的周期性及其求法.【分析】由条件利用三角函数的周期性和单调性,得出结论.【解答】解:由于y=sinxcosx=sin2x的周期为=π,且在(,)上单调递减,故满足条件.由于y=sinx+cosx=sin(x+)的周期为2π,故不满足条件.由于y=tan(x+)的周期为π,在(,)上,x+∈(,),故函数单调递增,故不满足条件.由于y=2cos22x﹣1=cos4x的周期为=,故不满足条件,故选:A.【点评】本题主要考查三角函数的周期性和单调性,属于基础题.9.若一个圆柱及一个圆锥的底面直径、高都与球的直径相等,则圆柱、球、圆锥的体积之比为(
)A.3:2:1;
B.2:3:1;
C.3:1:2;
D.不能确定。参考答案:C略10.若a=0.32,b=log20.3,c=20.3,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<c<a D.b<a<c参考答案:D【考点】对数值大小的比较;指数函数的单调性与特殊点.【专题】计算题.【分析】由0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,能比较a,b,c的大小关系.【解答】解:∵0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,∴b<a<c,故选D.【点评】本题考查对数值和指数值大小的比较,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.二、填空题:本大题共7小题,每小题4分,共28分11.已知集合?,且中至少含有一个奇数,则这样的集合有
▲
个.参考答案:512.已知log23=m,试用m表示=___________。参考答案:解析:===。13.设函数,若用表示不超过实数的最大整数,则函数的值域为_________.参考答案:14.若函数f(x)=,则f(log23)=()A.3 B.4 C.16 D.24参考答案:D【考点】对数的运算性质;函数的周期性;函数的值.【分析】先根据对数函数的性质判断log23的范围,代入相应的解析式求解,再判断所得函数值的范围,再代入对应解析式求解,利用对数的恒等式“=N”进行求解.【解答】解:∵log23<4,∴f(log23)=f(log23+3),∵log23+3>4,∴f(log23+3)===24.故选D.15.已知集合至多有一个元素,则的取值范围
;若至少有一个元素,则的取值范围
。参考答案:,16.的振幅为
初相为
。参考答案:3略17.已知函数f(x)=ln(2x+a2﹣4)的定义域、值域都为R,则a取值的集合为.参考答案:{﹣2,2}【考点】函数的值域;函数的定义域及其求法.【分析】由题意,函数f(x)=ln(2x+a2﹣4)的定义域、值域都为R,即2x+a2﹣4>0在x∈R上恒成立.即可求解.【解答】解:由题意,函数f(x)=ln(2x+a2﹣4)的定义域、值域都为R,即2x+a2﹣4>0在x∈R上恒成立.∵x∈R,2x>0,要使2x+a2﹣4值域为R,∴只需4﹣a2=0得:a=±2.∴得a取值的集合为{﹣2,2}.故答案为{﹣2,2}.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,求函数的定义域,并讨论它的奇偶性参考答案:且,且,即定义域为;
为奇函数;略19.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者。现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第5组志愿者有被抽中的概率.参考答案:(1)分别抽取3人,2人,1人;(2)【分析】(1)频率分布直方图各组频率等于各组矩形的面积,进而算出各组频数,再根据分层抽样总体及各层抽样比例相同求解;(2)列出从名志愿者中随机抽取名志愿者所有的情况,再根据古典概型概率公式求解.【详解】(1)第组的人数为,第组的人数为,第组的人数为,因为第,,组共有名志愿者,所以利用分层抽样的方法在名志愿者中抽取名志愿者,每组抽取的人数分别为:第组:;第组:;第组:.所以应从第,,组中分别抽取人,人,人.(2)设“第组的志愿者有被抽中”为事件.记第组的名志愿者为,,,第组的名志愿者为,,第组的名志愿者为,则从名志愿者中抽取名志愿者有:,,,,,,,,,,,,,,,共有种.其中第组的志愿者被抽中的有种,答:第组的志愿者有被抽中的概率为【点睛】本题考查频率分布直方图,分层抽样和古典概型,注意列举所有情况时不要遗漏.20.(本小题满分10分)
已知函数(1)求函数的定义域;(2)求的值;参考答案:21.有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4. (Ⅰ)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;(Ⅱ)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线与圆有公共点的概率.参考答案:解:(I)用(a,b)(a表示第一次取到球的编号,b表示第二次取到球的编号)表示先后二次取球构成的基本事件,则基本事件有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12个.……………3分设“第一次取到球的编号为偶数且两个球的编号之和能被3整除”为事件A,则事件A包含的基本事件有:(2,1),(2,4),(4,2)共有3个,……5分∴.………………………6分(II)基本事件有(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个,…………8分设“直线与圆有公共的”为事件B,由题意,即,则事件B包含的基本事件有(1,4),(2,4)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机场航站楼钢结构施工承包合同
- 矿山设备维修服务招投标文件
- 能源开发招标管理要点
- 商业建筑临时设施施工合同
- 环保企业员工聘用合同范本
- 采矿业屋面瓦安装合同
- 机械合同模板写
- pc安装合同范例
- 城市公园外墙体租赁合同
- 店铺合伙经营合同范例
- 2024-2030年中国海上风力发电行业发展状况及投资策略规划分析报告
- (试卷)建瓯市2024-2025学年第一学期七年级期中质量监测
- 机耕道路维护方案
- 《安徽省二年级上学期数学期末试卷全套》
- 4.2 让家更美好(大单元教学设计) -2024-2025学年统编版道德与法治七年级上册
- 保安人员安全知识培训内容
- 山东省淄博市张店区2024-2025学年八年级上学期期中语文试题(含答案)
- 上海市普陀区2024-2025学年六年级(五四学制)上学期期中语文试题
- 2024黔东南州事业单位第二批遴选人员调减遴选历年高频难、易错点500题模拟试题附带答案详解
- 2024年海南省高考历史试卷(含答案解析)
- 2024版成人术中非计划低体温预防与护理培训课件
评论
0/150
提交评论