下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省惠州市平潭中学2023年高三数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1..设x、y满足
则 A.有最小值2,最大值3 B.有最小值2,无最大值 C.有最大值3,无最大值 D.既无最小值,也无最大值参考答案:B做出可行域如图(阴影部分)。由得,做直线,平移直线由图可知当直线经过点C(2,0)时,直线的截距最小,此时z最小为2,没有最大值,选B.2.参考答案:C略3.设,,则双曲线的离心率的概率是(
)A.
B.
C.
D.参考答案:A4.若集合则“”是“”的(
)A.充分不必要条件
B.必要不充分条件C.充要条件
D.既不充分也不必要条件参考答案:A略5.执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S为(
) A.2 B.2 C.4 D.6参考答案:B考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的S,i的值,当i=5时,不满足条件i≤4,退出循环,输出S的值为2.解答: 解:模拟执行程序框图,可得S=1,i=1满足条件i≤4,S=1,i=2满足条件i≤4,S=,i=3满足条件i≤4,S=2,i=4满足条件i≤4,S=2,i=5不满足条件i≤4,退出循环,输出S的值为2.故选:B.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的S的值是解题的关键,属于基本知识的考查.6.在等差数列{an}中,a3﹣a2=﹣2,a7=﹣2,则a9=()A.2 B.﹣2 C.﹣4 D.﹣6参考答案:D【考点】等差数列的通项公式.【分析】由a3﹣a2=﹣2,即d=﹣2,再根据等差数列的性质即可求出.【解答】解:由a3﹣a2=﹣2,即d=﹣2,∴a9=a7+2d=﹣2+2×(﹣2)=﹣6,故选:D.7.设偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-2)>0}=
A.{x|x<-2或x>4}
B.{x|x<0或x>4}
C.{x|x<0或x>6}
D.{x|x<-2或x>2}参考答案:B8.已知函数,,要得到函数的图象,只需将函数的图象上的所有点(
)A.横坐标缩短为原来的,再向左平移个单位得到B.横坐标缩短为原来的,再向左平移个单位得到C.横坐标伸长为原来的2倍,再向左平移个单位得到D.横坐标伸长为原来的2倍,再向左平移个单位得到参考答案:B因为由图象上所有点横坐标缩短为原来的得到函数的图象,所以再将函数的图象向左平移个单位后,就得到的图象的图象.试题立意:本小题考查三角函数图象及其性质,图象变换等基础知识;考查推理论证能力,化归转化思想.9.若向量与的夹角为120°,且,则有
A.
B.
C.
D.参考答案:A略10.若变量x,y满足约束条件,则的最大值为(
)A.2 B. C. D.参考答案:D【分析】根据约束条件得到可行域,将化为,根据的几何意义可求得取时,最大,代入可求得的最大值.【详解】由约束条件可得可行域如下图阴影部分所示:
取最大值时,最大的几何意义为:与原点连线的斜率由上图可知,点与原点连线斜率最大由得:
本题正确选项:D【点睛】本题考查线性规划中斜率型的最值的求解,关键是能够明确分式类型的目标函数的几何意义,属于常规题型.二、填空题:本大题共7小题,每小题4分,共28分11.若在(-∞,+∞)不是单调函数,则a的范围是
.参考答案:(-∞,-1)∪(1,+∞),由于函数在不是单调函数,因此,解得或.
12.在△ABC中,内角A,B,C的对边分别为a,b,c,角B为锐角,且8sinAsinC=sin2B,则的取值范围为
。参考答案:13.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。由图中数据可知a=
。参考答案:0.03014.函数f(x)=log2(2x﹣1)的定义域为.参考答案:(,+∞)【考点】对数函数的定义域.【专题】函数的性质及应用.【分析】函数f(x)=log2(2x﹣1)的定义域满足2x﹣1>0,由此能求出结果.【解答】解:∵函数f(x)=log2(2x﹣1)的定义域满足:2x﹣1>0,解得x>,∴函数f(x)=log2(2x﹣1)的定义域为(,+∞).故答案为:(,+∞).【点评】本题考查对数函数的定义域的求法,是基础题,解题时要注意函数的性质的合理运用.15.直三棱柱ABC-A1B1C1中,已知AB⊥BC,AB=3,BC=4,AA1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为
.参考答案:50π是直三棱柱,,又三棱柱的所有顶点都在同一球面上,是球的直径,;,,;故该球的表面积为
16.在中,边所对的角分别是已知,若,则的面积是____参考答案:略17.给出下列命题:①若是奇函数,则的图像关于轴对称;②若函数对任意满足,则8是函数的一个周期;③若,则;④若在上是增函数,则.其中正确命题的序号是__________.参考答案:①②④略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图所示,在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,BD⊥AC于O,且AA1=OC=2OA=4,点M是棱CC1上一点.(Ⅰ)如果过A1,B1,O的平面与底面ABCD交于直线l,求证:l∥AB;(Ⅱ)当M是棱CC1中点时,求证:A1O⊥DM;(Ⅲ)设二面角A1﹣BD﹣M的平面角为θ,当|cosθ|=时,求CM的长.参考答案:【考点】二面角的平面角及求法.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)根据线面平行的性质定理即可证明l∥AB;(Ⅱ)根据线面垂直的性质定理即可证明A1O⊥DM;(Ⅲ)建立空间坐标系,利用向量法进行求解即可.【解答】证明:(Ⅰ)因为ABCD﹣A1B1C1D1是棱柱,所以A1B1BA是平行四边形.所以A1B1∥AB.因为A1B1?平面ABCD,AB?平面ABCD,所以A1B1∥平面ABCD.因为平面A1BO∩平面ABCD=l,所以l∥A1B1.所以l∥AB.(Ⅱ)因为DB⊥AC于O,如图建立空间直角坐标系.因为AA1=4,且OC=2AO=4,
所以O(0,0,0),C(4,0,0),A(﹣2,0,0),A1(﹣2,0,4).因为M是棱CC1中点,所以M(4,0,2).设D(0,b,0),所以=(4,﹣b,2),=(﹣2,0,4).所以?=﹣8+0+8=0.所以A1O⊥DM.(Ⅲ)设D(0,b,0),B(0,c,0),平面A1BD的法向量为=(x,y,z),又因为,,所以,即.因为b≠c,所以y=0,令z=1,则x=2,所以=(2,0,1).设M(4,0,h),所以=(﹣4,b,﹣h),.设平面MBD的法向量为=(x,y,z),所以,即.因为b≠c,所以y=0,令z=1,则x=,所以=(,0,1).又因为|cosθ|=,所以|cos<>|=,即==.解得h=3或h=.所以点M(4,0,3)或M(4,0,).所以CM=3或CM=.【点评】本题主要考查空间直线垂直以及线面垂直平行的性质定理的应用,以及二面角的求解,建立坐标系利用向量法是解决空间二面角的常用方法.19.(本题满分14分)已知数列满足(),,记数列的前项和为,.(I)令,求证数列为等差数列,并求其通项公式;(II)证明:(i)对任意正整数,;(ii)数列从第2项开始是递增数列.参考答案:(I)由得,所以且,故是以为首项为公差的等差数列.所以………4分(II)(i)由(I)知,,要证,只需证.下面用数学归纳法证明:①当时,,结论成立.
②假设当时结论成立,即.那么,当时,,即结论成立.由①②可知,结论对一切正整数都成立.
…9分(ii)由,则.…11分令,且,则,因为,所以在单调递增,则,即,.故数列是递增数列.…14分20.(文)某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元。 (1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费; (2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)
参考答案:(文)解:(1)
………3分 由基本不等式得
当且仅当,即时,等号成立
……6分∴,成本的最小值为元.……7分(2)设总利润为元,则
……………10分当时,……………………13分答:生产件产品时,总利润最高,最高总利润为元.………14分略21.(本小题满分10分)已知函数的图象与的交点为,它在轴右侧的第一个最高点和第一个最低点之间的距离为(1)求的解析式;(2)在中,,且,求的周长的最大值。参考答案:22.(本小题满分12分)设,且曲线y=f(x)在x=1处的切线与x轴平行。(I)
求a的值,并讨论f(x)的单调性;(II)
证明:当参考答案:解析:(Ⅰ).有条件知,
,故.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流课程设计实验
- 种蘑菇课程设计
- 中华人民共和国民法典知识竞赛题库及答案
- 2024幼儿园安全教育工作总结结尾(31篇)
- 2024年自来水公司年终工作总结(35篇)
- 液体混合装置plc课程设计
- 玉雕课程设计
- 食品行业客服工作总结
- 客房清洁员的工作总结
- 中医科医师工作总结
- GB/T 3487-2024乘用车轮辋规格系列
- GB/T 22517.2-2024体育场地使用要求及检验方法第2部分:游泳场地
- DB2305T 024-2024 关防风栽培技术规程
- 年产500t o-甲基-n-硝基异脲技改项目可研报告
- 酒店英语会话(第六版)教案 unit 1 Room Reservations
- 2024至2030年中国蔬菜种植行业市场全景监测及投资策略研究报告
- 2024旅行社免责协议书模板范本
- 2024汽车行业社媒营销趋势【微播易CAA中国广告协会】-2024-数字化
- 2022-2023学年教科版五年级科学上册期末复习资料
- DL∕T 2558-2022 循环流化床锅炉基本名词术语
- 教师进企业实践日志
评论
0/150
提交评论