广东省广州市第六十六中学2021-2022学年高三数学理期末试卷含解析_第1页
广东省广州市第六十六中学2021-2022学年高三数学理期末试卷含解析_第2页
广东省广州市第六十六中学2021-2022学年高三数学理期末试卷含解析_第3页
广东省广州市第六十六中学2021-2022学年高三数学理期末试卷含解析_第4页
广东省广州市第六十六中学2021-2022学年高三数学理期末试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市第六十六中学2021-2022学年高三数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.将函数h(x)=2sin(2x+)的图象向右平移个单位,再向上平移2个单位,得到函数f(x)的图象,则函数f(x)的图象与函数h(x)的图象()A.关于直线x=0对称 B.关于直线x=1对称C.关于点(1,0)对称 D.关于点(0,1)对称参考答案:D【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】通过函数图象的平移得到函数f(x)的解析式为f(x)=2sin(2x﹣)+2.对于选项A,h(x)的图象关于x=0的对称图象对应的解析式为h(﹣x)=2sin(﹣2x+)≠f(x),选项A错误;对于选项B,h(x)的图象关于x=1的对称图象对应的解析式为h(2﹣x)=2sin(4﹣2x+)=﹣2sin(2x﹣4﹣)≠f(x),选项B错误;对于选项C,h(x)的图象关于点(1,0)的对称图象对应的解析式为﹣h(2﹣x)=﹣2sin(4﹣2x+)=2sin(2x﹣4﹣)≠f(x),选项C错误;对于选项D,h(x)的图象关于点(0,1)的对称图象对应的解析式为2﹣h(﹣x)=2﹣2sin(﹣2x+)=2sin(2x﹣)+2,选项D正确.【解答】解:将函数h(x)=2sin(2x+)的图象向右平移个单位,再向上平移2个单位,得到函数f(x)的图象的解析式为f(x)=2sin[2(x﹣)+]+2=2sin(2x﹣)+2.∵f(x)+h(﹣x)=2sin(2x﹣)+2+2sin(﹣2x+)=2,∴f(x)=2﹣h(﹣x)=2×1﹣h(2×0﹣x).则函数f(x)的图象与函数h(x)的图象关于点(0,1)对称.故选:D.【点评】本题考查y=Asin(ωx+φ)型函数的图象变换,三角函数的平移原则为左加右减上加下减,解答此题的关键是熟记y=f(x)的图象与y=2b﹣f(2a﹣x)的图象关于(a,b)对称,是中档题.2.是双曲线的左、右焦点,过的直线与的左、右两支分别交于点,若为等边三角形,则双曲线的离心率为(

)A.4

B.

C.

D.参考答案:B考点:双曲线的简单性质3.已知函数,则方程(为正实数)的根的个数不可能为(

)A.3个

B.4个

C.5个

D.6个

参考答案:C4.执行如图所示的程序框图,输出的值为

(A)(B)(C)(D)参考答案:B由程序框图可知,当时,满足条件,即,所以该程序是求的程序,所以,选B.5.向量若b与b—a的夹角等于,则的最大值为

A.4

B.2

C.2

D.参考答案:A6.已知的值为

(

)A.

B.

C.

D.参考答案:D7.有关命题的说法错误的是A.命题“若

,则”的逆否命题为:“若,则”B.“”是“”的充分不必要条件.C.若为假命题,则、均为假命题.D.对于命题:使得.则:

均有.参考答案:C略8.设等比数列的公比,前项和为,则的值为

A.

B.

C.

D.参考答案:A略9.已知向量||=10,||=12,且=﹣60,则向量与的夹角为()A.60° B.120° C.135° D.150°参考答案:B【考点】数量积表示两个向量的夹角.【分析】利用向量的模、夹角形式的数量积公式,列出方程,求出两个向量的夹角余弦,求出夹角.【解答】解:设向量的夹角为θ则有:,所以10×12cosθ=﹣60,解得.∵θ∈[0,180°]所以θ=120°.故选B10.已知i是虚数单位.复数,则复数在复平面上对应的点位于A.第一象限

B.第二象限

C.第三象限

D.第四象限参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知向量,,若,则实数k=

.参考答案:4,则题意,解得.

12.。参考答案:略13.已知函数与的图象有公共点,且点的横坐标为2,则_______.参考答案:14.已知f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数x满足f()<f(﹣1),则x的取值范围是

.参考答案:【考点】奇偶性与单调性的综合.【分析】利用函数是偶函数得到不等式f(log|x+1|)<f(﹣1),等价为f(|log2|x+1||)<f(1),然后利用函数在区间[0,+∞)上单调递增即可得到不等式的解集.【解答】解:∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.∴不等式f(log|x+1|)<f(﹣1),等价为f(|log2|x+1||)<f(1),即|log2|x+1||<1∴﹣1<log2|x+1|<1,解得x的取值范围是.故答案为.15.设若,,则的

值是

.参考答案:216.甲烷分子由一个碳原子和四个氢原子构成,其空间结构为正四面体,碳原子位于该正四面体的中心,四个氢原子分别位于该正四面体的四个顶点上,若将碳原子和氢原子均视为一个点(体积忽略不计),设碳原子与每个氢原子的距离都是a,则该正四面体的体积为_________.参考答案:17.若函数在处取极值,则a=________.参考答案:3三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数在x=1处有极小值—1.

(1)求的值;

(2)求出函数f(x)的单调区间.

参考答案:(1)a=1,b=-1;(2)单调递增区间为,,单调递增区间为.

解析:(1)由题易知

(2)由可得或;由可得所以函数的单调递增区间为,函数的单调递增区间为---------------12分

略19.据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.参考答案:【考点】函数解析式的求解及常用方法.【专题】压轴题.【分析】(1)设直线l交v与t的函数图象于D点.由图象知,点A的坐标为(10,30),故直线OA的解析式为v=3t,当t=4时,D点坐标为(4,12),OT=4,TD=12,S=×4×12=24(km);(2)分类讨论:当0≤t≤10时;当10<t≤20时;当20<t≤35时;(3)根据t的值对应求S,然后解答.【解答】解:设直线l交v与t的函数图象于D点,(1)由图象知,点A的坐标为(10,30),故直线OA的解析式为v=3t,当t=4时,D点坐标为(4,12),∴OT=4,TD=12,∴S=×4×12=24(km);

(2)当0≤t≤10时,此时OT=t,TD=3t(如图1)∴S=?t?3t=当10<t≤20时,此时OT=t,AD=ET=t﹣10,TD=30(如图2)∴S=S△AOE+S矩形ADTE=×10×30+30(t﹣10)=30t﹣150当20<t≤35时,∵B,C的坐标分别为,(35,0)∴直线BC的解析式为v=﹣2t+70∴D点坐标为(t,﹣2t+70)∴TC=35﹣t,TD=﹣2t+70(如图3)∴S=S梯形OABC﹣S△DCT=(10+35)×30﹣(35﹣t)(﹣2t+70)=﹣(35﹣t)2+675;(3)∵当t=20时,S=30×20﹣150=450(km),当t=35时,S=﹣(35﹣35)2+675=675(km),而450<650<675,∴N城会受到侵袭,且侵袭时间t应在20h至35h之间,由﹣(35﹣t)2+675=650,解得t=30或t=40(不合题意,舍去).∴在沙尘暴发生后30h它将侵袭到N城.【点评】本题考查的是一次函数在实际生活中的运用,比较复杂,解答此题的关键是根据图形反映的数据进行分段计算,难度适中.20.如图,正三角形的边长为,,,分别在三边,和上,且为的中点,,,.(1)当时,求的大小;(2)求的面积的最小值及使得取最小值时的值。参考答案:(1);(2)当时,取最小值.分析:在中,由正弦定理得,…..2分在中,由正弦定理得.…..4分由,得,整理得,…..5分所以.…6分(2)……10分当时,取最小值.……12分21.已知椭圆E:+=1(a>)的离心率e=,右焦点F(c,0),过点A(,0)的直线交椭圆E于P,Q两点.(1)求椭圆E的方程;(2)若点P关于x轴的对称点为M,求证:M,F,Q三点共线;(3)当△FPQ面积最大时,求直线PQ的方程.参考答案:【考点】椭圆的简单性质.【分析】(1)由椭圆的离心率公式,计算可得a与c的值,由椭圆的几何性质可得b的值,将a、b的值代入椭圆的方程计算可得答案;(2)根据题意,设直线PQ的方程为y=k(x﹣3),联立直线与椭圆的方程可得(3k2+1)x2﹣18k2x+27k2﹣6=0,设出P、Q的坐标,由根与系数的关系的分析求出、的坐标,由向量平行的坐标表示方法,分析可得证明;(3)设直线PQ的方程为x=my+3,联立直线与椭圆的方程,分析有(m2+3)y2+6my+3=0,设P(x1,y1),Q(x2,y2),结合根与系数的关系分析用y1.y2表示出△FPQ的面积,分析可得答案.【解答】解:(1)由,c=ea=×=2,则b2=a2﹣c2=2,∴椭圆E的方程是.(2)证明:由(1)可得A(3,0),设直线PQ的方程为y=k(x﹣3),由方程组,得(3k2+1)x2﹣18k2x+27k2﹣6=0,依题意△=12(2﹣3k2)>0,得.设P(x1,y1),Q(x2,y2),则,∵,由(2﹣x1)y2﹣(x2﹣2)y1=(2﹣x1)?k(x2﹣3)﹣(x2﹣2)?k(x1﹣3)=,得,∴M,F,Q三点共线.(3)设直线PQ的方程为x=my+3.由方程组,得(m2+3)y2+6my+3=0,依题意△=36m2﹣12(m2+3)>0,得.设P(x1,y1),Q(x2,y2),则.∴=,令t=m2+3,则,∴,即时,S△FPQ最大,∴S△F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论