版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为()A. B. C. D.2.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知,,分别为内角,,的对边,,,的面积为,则()A. B.4 C.5 D.4.陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为()A. B.C. D.5.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是()A. B. C. D.6.已知为等腰直角三角形,,,为所在平面内一点,且,则()A. B. C. D.7.在中,角的对边分别为,,若,,且,则的面积为()A. B. C. D.8.已知定点,,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是()A.椭圆 B.双曲线 C.抛物线 D.圆9.已知集合,则()A. B. C. D.10.若函数,在区间上任取三个实数,,均存在以,,为边长的三角形,则实数的取值范围是()A. B. C. D.11.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入、的值分别为、,则输出的值为()A. B. C. D.12.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数满足,则的最小值是______________.14.根据如图所示的伪代码,输出的值为______.15.已知,是互相垂直的单位向量,若与λ的夹角为60°,则实数λ的值是__.16.在中,内角的对边长分别为,已知,且,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若,且(1)求的最小值;(2)是否存在,使得?并说明理由.18.(12分)如图,在直角梯形中,,,,为的中点,沿将折起,使得点到点位置,且,为的中点,是上的动点(与点,不重合).(Ⅰ)证明:平面平面垂直;(Ⅱ)是否存在点,使得二面角的余弦值?若存在,确定点位置;若不存在,说明理由.19.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.20.(12分)在四棱锥中,底面是边长为2的菱形,是的中点.(1)证明:平面;(2)设是直线上的动点,当点到平面距离最大时,求面与面所成二面角的正弦值.21.(12分)已知等差数列和等比数列的各项均为整数,它们的前项和分别为,且,.(1)求数列,的通项公式;(2)求;(3)是否存在正整数,使得恰好是数列或中的项?若存在,求出所有满足条件的的值;若不存在,说明理由.22.(10分)已知,且.(1)请给出的一组值,使得成立;(2)证明不等式恒成立.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.【详解】双曲线与互为共轭双曲线,四个顶点的坐标为,四个焦点的坐标为,四个顶点形成的四边形的面积,四个焦点连线形成的四边形的面积,所以,当取得最大值时有,,离心率,故选:D.【点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.2、B【解析】
分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【详解】因为时,所以,,所以复数在复平面内对应的点位于第二象限.故选:B.【点睛】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.3、D【解析】
由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出的值.【详解】解:,即,即.,则.,解得.,故选:D.【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角的正弦值余弦值.4、C【解析】
画出几何体的直观图,利用三视图的数据求解几何体的表面积即可,【详解】由题意可知几何体的直观图如图:上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:,故选:C【点睛】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.5、D【解析】
把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率.【详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,∴所求概率为.故选:D.【点睛】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率.6、D【解析】
以AB,AC分别为x轴和y轴建立坐标系,结合向量的坐标运算,可求得点的坐标,进而求得,由平面向量的数量积可得答案.【详解】如图建系,则,,,由,易得,则.故选:D【点睛】本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.7、C【解析】
由,可得,化简利用余弦定理可得,解得.即可得出三角形面积.【详解】解:,,且,,化为:.,解得..故选:.【点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.8、B【解析】
根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可.【详解】因为线段的垂直平分线与直线相交于点,如下图所示:所以有,而是中点,连接,故,因此当在如下图所示位置时有,所以有,而是中点,连接,故,因此,综上所述:有,所以点的轨迹是双曲线.故选:B【点睛】本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.9、A【解析】
考虑既属于又属于的集合,即得.【详解】.故选:【点睛】本题考查集合的交运算,属于基础题.10、D【解析】
利用导数求得在区间上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得的取值范围.【详解】的定义域为,,所以在上递减,在上递增,在处取得极小值也即是最小值,,,,,所以在区间上的最大值为.要使在区间上任取三个实数,,均存在以,,为边长的三角形,则需恒成立,且,也即,也即当、时,成立,即,且,解得.所以的取值范围是.故选:D【点睛】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题.11、B【解析】
列出循环的每一步,由此可得出输出的值.【详解】由题意可得:输入,,,;第一次循环,,,,继续循环;第二次循环,,,,继续循环;第三次循环,,,,跳出循环;输出.故选:B.【点睛】本题考查根据算法框图计算输出值,一般要列举出算法的每一步,考查计算能力,属于基础题.12、B【解析】
根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,,不成立,运行第二次,,不成立,运行第三次,,不成立,运行第四次,,不成立,运行第五次,,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先画出不等式组对应的可行域,再利用数形结合分析解答得解.【详解】画出不等式组表示的可行域如图阴影区域所示.由题得y=-3x+z,它表示斜率为-3,纵截距为z的直线系,平移直线,易知当直线经过点时,直线的纵截距最小,目标函数取得最小值,且.故答案为:-8【点睛】本题主要考查线性规划问题,意在考查学生对这些知识的理解掌握水平和数形结合分析能力.14、7【解析】
表示初值S=1,i=1,分三次循环计算得S=10>0,输出i=7.【详解】S=1,i=1第一次循环:S=1+1=2,i=1+2=3;第二次循环:S=2+3=5,i=3+2=5;第三次循环:S=5+5=10,i=5+2=7;S=10>9,循环结束,输出:i=7.故答案为:7【点睛】本题考查在程序语句的背景下已知输入的循环结构求输出值问题,属于基础题.15、【解析】
根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设(1,0),(0,1),则(,﹣1),λ(1,λ);又夹角为60°,∴()•(λ)λ=2cos60°,即λ,解得λ.【点睛】本题考查了单位向量和平面向量数量积的运算问题,是中档题.16、4【解析】∵∴根据正弦定理与余弦定理可得:,即∵∴∵∴故答案为4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不存在.【解析】
(1)由已知,利用基本不等式的和积转化可求,利用基本不等式可将转化为,由不等式的传递性,可求的最小值;(2)由基本不等式可求的最小值为,而,故不存在.【详解】(1)由,得,且当时取等号.故,且当时取等号.所以的最小值为;(2)由(1)知,.由于,从而不存在,使得成立.【考点定位】基本不等式.18、(Ⅰ)见解析(Ⅱ)存在,此时为的中点.【解析】
(Ⅰ)证明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假设存在点满足题意,过作于,平面,过作于,连接,则,过作于,连接,是二面角的平面角,设,,计算得到答案.【详解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假设存在点满足题意,过作于,由知,易证平面,所以平面,过作于,连接,则(三垂线定理),即是二面角的平面角,不妨设,则,在中,设(),由得,即,得,∴,依题意知,即,解得,此时为的中点.综上知,存在点,使得二面角的余弦值,此时为的中点.【点睛】本题考查了面面垂直,根据二面角确定点的位置,意在考查学生的空间想象能力和计算能力,也可以建立空间直角坐标系解得答案.19、(1)(2)【解析】
(1)由,可求,然后由时,可得,根据等比数列的通项可求(2)由,而,利用裂项相消法可求.【详解】(1)当时,,解得,当时,①②②①得,即,数列是以2为首项,2为公比的等比数列,;(2)∴,∴,,.【点睛】本题考查递推公式在数列的通项求解中的应用,等比数列的通项公式、裂项求和方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.20、(1)证明见解析(2)【解析】
(1)取中点,连接,根据菱形的性质,结合线面垂直的判定定理和性质进行证明即可;(2)根据面面垂直的判定定理和性质定理,可以确定点到直线的距离即为点到平面的距离,结合垂线段的性质可以确定点到平面的距离最大,最大值为1.以为坐标原点,直线分别为轴建立空间直角坐标系.利用空间向量夹角公式,结合同角的三角函数关系式进行求解即可.【详解】(1)证明:取中点,连接,因为四边形为菱形且.所以,因为,所以,又,所以平面,因为平面,所以.同理可证,因为,所以平面.(2)解:由(1)得平面,所以平面平面,平面平面.所以点到直线的距离即为点到平面的距离.过作的垂线段,在所有的垂线段中长度最大的为,此时必过的中点,因为为中点,所以此时,点到平面的距离最大,最大值为1.以为坐标原点,直线分别为轴建立空间直角坐标系.则所以平面的一个法向量为,设平面的法向量为,则即取,则,,所以,所以面与面所成二面角的正弦值为.【点睛】本题考查了线面垂直的判定定理和性质的应用,考查了二面角的向量求法,考查了推理论证能力和数学运算能力.21、(1);(2);(3)存在,1.【解析】
(1)利用基本量法直接计算即可;(2)利用错位相减法计算;(3),令可得,,讨论即可.【详解】(1)设数列的公差为,数列的公比为,因为,所以,即,解得,或(舍去).所以.(2),,所以,所以.(3)由(1)可得,,所以.因为是数列或中的一项,所以,所以,因为,所以,又,则或.当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保险公司基本药物报销方案
- 铁路运输安全隐患治理方案
- 村级保洁员协议书(2篇)
- 物业公司品牌形象提升方案
- 家装行业合同回款管理制度
- 期中测试卷(1~3单元)2024-2025学年人教版数学五年级上册
- 工程钢管租赁合同模板(2篇)
- 上市公司投资资产探析
- 小区回填土方合同范本(2篇)
- 环保会议会务工作总结与思考
- 《布的基本知识》课件
- 全国高中化学优质课大赛《氧化还原反应》课件
- 超声波的基本性质讲解
- 生涯发展报告 (修改)
- 常见信访问题及答复依据(57)课件
- 华为总裁办部门职责
- 体系工程师年终总结
- 降低手术病人呼吸功能锻炼的不规范率 肝胆外科一等奖品管圈果汇报护理课件
- 关于人员调整的报告
- 存储巡检报告
- 留学生管理工作计划
评论
0/150
提交评论