版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则()A. B. C. D.2.执行下面的程序框图,若输出的的值为63,则判断框中可以填入的关于的判断条件是()A. B. C. D.3.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移个单位长度,得到函数的图象,若,则的值可能为()A. B. C. D.4.若为过椭圆中心的弦,为椭圆的焦点,则△面积的最大值为()A.20 B.30 C.50 D.605.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种6.在条件下,目标函数的最大值为40,则的最小值是()A. B. C. D.27.已知为锐角,且,则等于()A. B. C. D.8.是虚数单位,复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知集合,,则()A. B.C. D.10.已知,则()A.5 B. C.13 D.11.等比数列中,,则与的等比中项是()A.±4 B.4 C. D.12.如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是()A.甲得分的平均数比乙大 B.甲得分的极差比乙大C.甲得分的方差比乙小 D.甲得分的中位数和乙相等二、填空题:本题共4小题,每小题5分,共20分。13.已知实数满约束条件,则的最大值为___________.14.在正方体中,为棱的中点,是棱上的点,且,则异面直线与所成角的余弦值为__________.15.已知数列的前项和为且满足,则数列的通项_______.16.若双曲线的两条渐近线斜率分别为,,若,则该双曲线的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角、、所对的边长分别为、、,已知.(1)求的值;(2)若,点是线段的中点,,求的面积.18.(12分)选修4-5:不等式选讲已知函数的最大值为3,其中.(1)求的值;(2)若,,,求证:19.(12分)如图,已知抛物线:与圆:()相交于,,,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.20.(12分)已知函数(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.21.(12分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线?(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.22.(10分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,,,,,,,,可得,,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.2、B【解析】
根据程序框图,逐步执行,直到的值为63,结束循环,即可得出判断条件.【详解】执行框图如下:初始值:,第一步:,此时不能输出,继续循环;第二步:,此时不能输出,继续循环;第三步:,此时不能输出,继续循环;第四步:,此时不能输出,继续循环;第五步:,此时不能输出,继续循环;第六步:,此时要输出,结束循环;故,判断条件为.故选B【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.3、C【解析】
利用二倍角公式与辅助角公式将函数的解析式化简,然后利用图象变换规律得出函数的解析式为,可得函数的值域为,结合条件,可得出、均为函数的最大值,于是得出为函数最小正周期的整数倍,由此可得出正确选项.【详解】函数,将函数的图象上的所有点的横坐标缩短到原来的倍,得的图象;再把所得图象向上平移个单位,得函数的图象,易知函数的值域为.若,则且,均为函数的最大值,由,解得;其中、是三角函数最高点的横坐标,的值为函数的最小正周期的整数倍,且.故选C.【点睛】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定、均为函数的最大值,考查分析问题和解决问题的能力,属于中等题.4、D【解析】
先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.【详解】由题意,设A点的坐标为,根据对称性可得,则的面积为,当最大时,的面积最大,由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,又由,可得椭圆的上下顶点坐标为,所以的面积的最大值为.故选:D.【点睛】本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.5、B【解析】
根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有C3若甲村有2外科,1名护士,则有C3则总共的分配方案为2×(9+9)=2×18=36种,故选:B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.6、B【解析】
画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故..当,即时等号成立.故选:.【点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.7、C【解析】
由可得,再利用计算即可.【详解】因为,,所以,所以.故选:C.【点睛】本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题.8、D【解析】
求出复数在复平面内对应的点的坐标,即可得出结论.【详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【点睛】本题考查复数对应的点的位置的判断,属于基础题.9、A【解析】
根据对数性质可知,再根据集合的交集运算即可求解.【详解】∵,集合,∴由交集运算可得.故选:A.【点睛】本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.10、C【解析】
先化简复数,再求,最后求即可.【详解】解:,,故选:C【点睛】考查复数的运算,是基础题.11、A【解析】
利用等比数列的性质可得,即可得出.【详解】设与的等比中项是.
由等比数列的性质可得,.
∴与的等比中项
故选A.【点睛】本题考查了等比中项的求法,属于基础题.12、B【解析】
由平均数、方差公式和极差、中位数概念,可得所求结论.【详解】对于甲,;对于乙,,故正确;甲的极差为,乙的极差为,故错误;对于甲,方差.5,对于乙,方差,故正确;甲得分的中位数为,乙得分的中位数为,故正确.故选:.【点睛】本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】
画出可行域和目标函数,根据平移计算得到答案.【详解】根据约束条件,画出可行域,图中阴影部分为可行域.又目标函数表示直线在轴上的截距,由图可知当经过点时截距最大,故的最大值为8.故答案为:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.14、【解析】
根据题意画出几何题,建立空间直角坐标系,写个各个点的坐标,并求得.由空间向量的夹角求法即可求得异面直线与所成角的余弦值.【详解】根据题意画出几何图形,以为原点建立空间直角坐标系:设正方体的棱长为1,则所以所以,所以异面直线与所成角的余弦值为,故答案为:.【点睛】本题考查了异面直线夹角的求法,利用空间向量求异面直线夹角,属于中档题.15、【解析】
先求得时;再由可得时,两式作差可得,进而求解.【详解】当时,,解得;由,可知当时,,两式相减,得,即,所以数列是首项为,公比为的等比数列,所以,故答案为:【点睛】本题考查由与的关系求通项公式,考查等比数列的通项公式的应用.16、2【解析】
由题得,再根据求解即可.【详解】双曲线的两条渐近线为,可令,,则,所以,解得.故答案为:2.【点睛】本题考查双曲线渐近线求离心率的问题.属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)利用正弦定理的边化角公式,结合两角和的正弦公式,即可得出的值;(2)由题意得出,两边平方,化简得出,根据三角形面积公式,即可得出结论.【详解】(1)由正弦定理得即即在中,,所以(2)因为点是线段的中点,所以两边平方得由得整理得,解得或(舍)所以的面积【点睛】本题主要考查了正弦定理的边化角公式,三角形的面积公式,属于中档题.18、(1)(2)见解析【解析】
(1)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(2)将所证不等式转化为2ab≥1,再构造函数利用导数判断单调性求出最小值可证.【详解】(1)∵,∴.∴当时,取得最大值.∴.(2)由(Ⅰ),得,.∵,当且仅当时等号成立,∴.令,.则在上单调递减.∴.∴当时,.∴.【点睛】本题考查了绝对值不等式的解法,属中档题.本题主要考查了绝对值不等式的求解,以及不等式的恒成立问题,其中解答中根据绝对值的定义,合理去掉绝对值号,及合理转化恒成立问题是解答本题的关键,着重考查分析问题和解答问题的能力,以及转化思想的应用.19、(1)(2)点的坐标为【解析】
将抛物线方程与圆方程联立,消去得到关于的一元二次方程,抛物线与圆有四个交点需满足关于的一元二次方程在上有两个不等的实数根,根据二次函数的有关性质即可得到关于的不等式组,解不等式即可.不妨设抛物线与圆的四个交点坐标为,,,,据此可表示出直线、的方程,联立方程即可表示出点坐标,再根据等腰梯形的面积公式可得四边形的面积的表达式,令,由及知,对关于的面积函数进行求导,判断其单调性和最值,即可求出四边形的面积取得最大值时的值,进而求出点坐标.【详解】(1)联立抛物线与圆的方程消去,得.由题意可知在上有两个不等的实数根.所以解得,所以的取值范围为.(2)根据(1)可设方程的两个根分别为,(),则,,,,且,,所以直线、的方程分别为,,联立方程可得,点的坐标为,因为四边形为等腰梯形,所以,令,则,所以,因为,所以当时,;当时,,所以函数在上单调递增,在上单调递减,即当时,四边形的面积取得最大值,因为,点的坐标为,所以当四边形的面积取得最大值时,点的坐标为.【点睛】本题考查利用导数求函数的极值与最值、抛物线及其标准方程及直线与圆锥曲线相关的最值问题;考查运算求解能力、转化与化归能力和知识的综合运用能力;利用函数的思想求圆锥曲线中面积的最值是求解本题的关键;属于综合型强、难度大型试题.20、(1)(2)【解析】
(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式,求得的取值范围,根据分段函数解析式,求得的取值范围,结合题意列不等式,解不等式求得的取值范围.【详解】(1),由得或或;解得.故所求解集为.(2),即.由(1)知,所以,即.∴,∴.【点睛】本小题考查了绝对值不等式,绝对值三角不等式和函数最值问题,考查运算求解能力,推理论证能力,化归与转化思想.21、(1),抛物线;(2)存在,.【解析】
(1)设,易得,化简即得;(2)利用导数几何意义可得,要使,只需.联立直线m与抛物线方程,利用根与系数的关系即可解决.【详解】(1)设,由题意,得,化简得,所以动圆圆心Q的轨迹方程为,它是以F为焦点,以直线l为准线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年开封兰考县总工会招聘工会社会化工作者考试真题
- 老年病科护理相关内容
- 2024年九年级语文中考专题复习现代文阅读(含答案)
- 盆底康复治疗相关知识
- 2024专利代理人考试真题及答案
- 师范生毕业实习小结五篇
- 茶叶厂实习心得体会5篇
- 竞选学习委员的演讲稿(26篇)
- 酒店前台实习报告(素材稿件7篇)
- 肛肠科临床诊疗指南
- 剪映:手机短视频制作-配套课件
- 西气东输二线25标段山岭隧道内管道安装技术
- 小学综合实践活动-绿色出行教学课件设计
- 防校园欺凌-课件(共28张PPT)
- 第6章 智能网联汽车测评技术
- 单向板结构设计
- 普通高等学校学生转学申请表
- 房租、水、电费(专用)收据Excel模板
- 习近平总书记关于教育的重要论述研究学习通章节答案期末考试题库2023年
- 重症急性胰腺炎ppt恢复课件
- 2022江苏省沿海开发集团限公司招聘23人上岸笔试历年难、易错点考题附带参考答案与详解
评论
0/150
提交评论