调节阀流量特性及附件课件_第1页
调节阀流量特性及附件课件_第2页
调节阀流量特性及附件课件_第3页
调节阀流量特性及附件课件_第4页
调节阀流量特性及附件课件_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

调节阀的流量特性及附件

调节阀的流量特性5.2.1调节阀的流量特性调节阀的阀芯位移与流量之间的关系,对控制系统的调节品质有很大影响。流量特性的定义:被控介质流过阀门的相对流量与阀门的相对开度(相对位移)间的关系称为调节阀的流量特性。Q/Qmax—相对流量

l/L—相对开度调节阀的流量特性

相对流量Q/Qmax

是控制阀某一开度流量Q与全开时流量Qmax之比;相对开度l/L

是控制阀某一开度行程l与全开行程L之比。

调节阀的流量特性不仅与阀门的结构和开度有关,还与阀前后的压差有关,必须分开讨论。LQ调节阀的流量特性(1)直线流量特性控制阀的相对流量与相对开度成直线关系,即单位位移变化所引起的流量变化是常数。用数学式表示为:

R—调节阀的可调比系数。3142调节阀的流量特性

可调比R为调节阀所能控制的最大流量与最小流量的比值。R=Qmax/Qmin

其中Qmin不是指阀门全关时的泄漏量,而是阀门能平稳控制的最小流量,约为最大流量的2~4%一般阀门的可调比R=30。

在小开度时,流量相对变化值大,灵敏度高,不易控制,甚至发生震荡;在大开度时,流量相对变化值小,调节缓慢。3142调节阀的流量特性

直线阀的流量放大系数在任何一点上都是相同的,但其对流量的控制力却是不同的。控制力:阀门开度改变时,相对流量的改变比值。

例如在不同的开度上,再分别增加10%开度,相对流量的变化比值为10%时:[(20-10)/10]×100%=100%50%时:[(60-50)/50]×100%=20%80%时:[(90-80)/80]×100%=12.5%Q/Q100L/Lmaxs=1调节阀的流量特性

等百分比阀在各流量点的放大系数不同,但对流量的控制力却是相同的。

同样以10%、50%及80%三点为例,分别增加10%开度,相对流量变化的比值为:10%处:(6.58%-4.68%)/4.68%≈41%50%处:(25.7%-18.2%)/18.2%≈41%80%处:(71.2%-50.6%)/50.6%≈41%Q/Q100L/Lmaxs=1调节阀的流量特性

(3)快开特性开度较小时就有较大流量,随开度的增大,流量很快就达到最大,故称为快开特性。适用于迅速启闭的切断阀或双位控制系统。(4)抛物线流量特性特性曲线为抛物线,介于直线和对数曲线之间,使用较少。3142调节阀的流量特性

各种阀门都有自己特定的流量特性,如隔膜阀的流量特性近于快开特性,蝶阀的流量特性接近于等百分比特性。选择阀门时应该注意各种阀门的流量特性。对隔膜阀和蝶阀,由于它的结构特点,不可能用改变阀芯的曲面形状来改变其特性。因此,要改善其流量特性,只能通过改变阀门定位器反馈凸轮的外形来实现。调节阀的流量特性

从串联管道中调节阀两端压差△PT的变化曲线可看出,调节阀全关时阀上压力最大,基本等于系统总压力;调节阀全开时阀上压力降至最小。为了表示调节阀两端压差△PT的变化范围,以阀权度s表示调节阀全开时,阀前后最小压差△PTmin与总压力△

P之比。s=PTmin

/△

PP△PGQ△PT管路及设备△PG△PT调节阀△P△P调节阀的流量特性以Qmax表示串联管道阻力为零时(s=1),阀全开时达到的最大流量。可得串联管道在不同s值时,以自身Qmax作参照的工作流量特性。流量特性畸变:对数阀变为直线阀

直线阀变为快开阀s↓调节阀的流量特性

例:管道并联时的工作流量特性有的调节阀装有旁路,便于手动操作和维护。当生产能力提高或其他原因引起调节阀的最大流量满足不了工艺生产的要求时,可以把旁路打开一些,这时调节阀的理想流量特性就成为工作流量特性。调节阀的流量特性

结论串、并联管道使理想流量特性发生畸变,串联管道的影响尤为严重;

串、并联管道式调节阀可调比降低,并联管道更为严重;串联管道使系统总流量减少,并联管道使系统总流量增加;串联管道调节阀开度小时放大系数增加,开度大时则减少,并联管道调节阀的放大系数在任何开度下总比原来的减少。调节阀的附件

5.3.1气动阀门定位器气动阀门定位器接受气动调节器(或电气转换器)的气压输出信号,然后产生与该输出信号成比例的气压信号,用以控制气动调节阀。气动阀门定位器按其工作原理可分成位移平衡式和力(力矩)平衡式两大类。下面介绍力(力矩)平衡式气动阀门定位器。气动调节阀中,阀杆的位移是由薄膜上气压推力与弹簧反作用力平衡确定的。为了防止阀杆处的泄漏要压紧填料,使阀杆摩擦力增大,且个体差异较大,这会影响输入信号P的执行精度。调节阀的附件

解决措施在调节阀上加装阀门定位器,引入阀杆位移负反馈。使阀杆能按输入信号精确地确定自己的开度。调节阀的附件

力(力矩)平衡式气动阀门定位器按力矩平衡原理工作,如图1-5-32所示。当通入波纹管1的信号压力增加时,使主杠杆2绕支点15转动,挡板13靠近喷嘴14,喷嘴背压经放大器16放大后,送入到执行机构8的薄膜室,并使阀杆向下移动,带动反馈杆9绕支点4转动,反馈凸轮5也跟着作逆时针转动,通过滚轮10使副杠杆6绕支点7顺时针转动,并将反馈弹簧11拉伸,弹簧11对主杠杆2的拉力与信号压力作用在波纹管1上的力达到力矩平衡时仪表达到平衡状态。此时,一定的信号压力就对应一定的阀门位置。弹簧12是调零弹簧,调其预紧力可使挡板初始位置变化。弹簧3是迁移弹簧,在分程控制中用来改变波纹管对主杠杆作用力的初始值,以使定位器在接受不同输入信号范围(20-60kPa或60-100kPa)时,仍能产生相同的输出信号。

改变定位器反馈杆的长度可实现行程调整。将正作用定位器中的波纹管从主杠杆的右侧换到左侧,调节调零弹簧,是定位器的使其输出压力为100kPa,就能实现反作用调节。

调节阀的附件

5.3.2电-气转换器

为了使气动调节阀能够接收电动调节器的输出信号,必须把标准电流信号转换为标准气压信号。电/气转换器作用:把电动调节器或DCS输出的电流信号转换成气压信号,送到气动执行机构或其他气动仪表上去。(将4~20mA的电流信号转换成20~100KPa的标准气压信号)调节阀的附件

常见的电-气转换器的结构原理图。它由三大步分组成:电路部分,主要是测量线圈4;磁路部分,由磁钢5构成,它产生永久磁场;气动力平衡部分,由喷嘴、挡板、功率放大器及正、负反馈波纹管和调零弹簧组成。

电-气转换器的动作原理是力矩平衡原理。当4-20mA的直流信号通入测量线圈之后,载流线圈在磁场中产生电磁力,改电磁力与正、负反馈力矩平衡杠杆平衡,于是输出信号就与输入电流成为一一对应的关系,从而把电流信号变成对应的20-100kPa的气压信号。调节阀的附件

调节阀的附件

5.3.3电-气阀门定位器

电-气阀门定位器输入信号为调节器来的4-20mA的直流电信号,输出为驱动气动调节阀的气压信号,如图1-5-34所示。它能够同时起到电-气转换器和气动阀门定位器的作用。实际应用中,常把电/气转换器和阀门定位器结合成一体,组成电/气阀门定位器。调节阀的附件

I↑杠杆上端右移阀杆下移反馈凸轮右转反馈弹簧右拉杠杆平衡挡板靠近喷嘴P压力↑调节阀的附件

5.3.4智能式阀门定位器随着电子技术的迅速发展,微处理器也被引入到调节阀中,出现了智能式调节阀。主要功能如下:1.控制及执行功能2.补偿及校正功能3.通信功能4.诊断功能5.保护功能智能电动执行机构调节阀的附件

5.3.5阀门定位器的应用场合阀门定位器是调节阀的主要附件,它和调节阀组成一个闭环回路,能够增大调节阀的输出功率,减少调节信号的传递滞后,加快阀杆的移动速度,能够提高阀门的线性度,克服阀杆的摩擦力并消除不平衡力的影响,从而保证调节阀的正确定位。其主要作用如下:(1)

用于气动、电动仪表的复合调节系统在调节系统中,检测和调节仪表经常采用电器仪表,而执行机构又要求采用气动仪表。可采用电-气阀门定位器,也可使用一台电-气转换器和一台气动阀门定位器。(2)

用于摩擦力大的场合当调节阀用于高压介质时,为了防止流体从阀杆填料处泄漏,经常把填料压盖压得比较紧,在阀杆与填料之间会产生很大的摩擦力;当介质温度过高或过低时,阀杆与填料之间的摩擦力增大,过大的摩擦力会使阀杆行程产生误差。定位器能够克服这些摩擦力的作用,改善调节阀基本特性。(3)

用于高压差场合当调节阀两端的压差大于1MPa时,介质对阀芯产生较大的不平衡力,从而破坏原来的工作位置,使控制系统产生扰动作用。使用定位器,可以起到增大执行机构的输出力,克服不平衡力的作用。(4)

用于介质中含有固体悬浮物、黏性流体、含纤维、易结焦的场合使用定位器可以克服这些介质对阀杆移动所产生的较大阻力。调节阀的附件

(5)

增加执行机构的动作速度当调节器与调节阀相距较远时,为尽量缩短气动信号管的长度,克服信号的传递滞后,应使用电-气阀门定位器。(6)

用于调节阀口径较大的场合当调节阀口径大于100㎜、蝶阀口径大于250㎜时,由于阀芯重,阀芯截面积大及执行机构气室容积增大,响应特性变差。阀门定位器可改善调节阀的响应特性。(7)

用于活塞式执行机构的比例动作没有弹簧平衡的活塞式执行机构一般是两位式动作,非开则关。配用阀门定位器(单向或双向)可使这种执行机构执行比例动作。(8)

方便实现调节阀反向动作如果需要改变调节阀的气开/气关模式,就必须把阀芯反装,或改装另一种作用方式(正、反)的执行机构,这种改装限制较多,困难较大。如果利用阀门定位器,这种改变就容易多了。(9)改善调节阀的流量特性由于定位器反馈凸轮的几何形状决定调节阀对定位器的反馈量,从而改变调节器的输出信号与调节阀开度之间的关系,即修正了流量特性,所以调节阀的流量特性可以通过改变反馈凸轮的几何形状来改变

调节阀的附件

(10)

操作非标准信号的执行机构当阀门定位器的输出以标准信号(20-100KPa)去操作非标准信号(如40-200KPa)的气动薄膜执行机构时,可以有两种方法:一种是在定位器与执行机构之间配用一个1:2的气动继动器,把信号压力放大一倍;另一种方法是通过将阀门定位器的气源压力提高,这时阀门定位器的输出也相应提高,就可以操作非标准信号的执行机构。(11)

用于分程控制分程控制如图1-5-37所示,两台定位器由一台调节器来操纵。通过调整,使一台定位器的输入在20-60Kpa范围内变化时,另一台在60-100Kpa范围内变化时,输出均为20-100Kpa,从而实现分程控制。调节阀的附件

5.3.6电磁阀电动调节阀接受来自调节器的电流信号,阀门开度连续可调。电磁阀也接受来自调节器的电流信号,但阀门开度是位式调节。调节阀的附件

电磁阀由两个基本功能单元组成,即电磁线圈(电磁铁)和磁芯以及包含一个或几个孔的阀体。当电磁线圈通电或断电时,磁芯的运动将导致流体通过阀体或被切断。电磁线圈被直接装在阀体上,阀芯被封闭在密封管中,构成一个简洁、紧凑的组合。1.电磁阀的技术指标电磁阀的常用技术指标有以下几个:(1)CV值(流量系数)电磁阀的CV值与调节阀的CV值一样,表示介质通过电磁阀的流通能力,它取决于以下三个因素:介质的最大和最小流量;介质通过阀门的最大和最小压差;介质的相对密度、温度和黏度。(2)电磁线圈外壳的密封等级一般有传统的金属密封和整体模压的环氧树脂结构,在选用时要根据现场的实际使用条件即防水、防腐、防爆及环境温度来选取相应的适用等级。(3)最大操作压力差最大操作压力差是指确保电磁线圈安全操作阀门时可承受的阀门入口与出口间的最大压力差。若阀门出口压力是未知的,调节阀的附件

可把供给压力当作最大差压。需要注意,同口径的电磁阀使用交流电驱动与使用直流电驱动其最大操作压力差是不同(4)最小操作压力差最小操作压力差是指开启阀门所需的最小压差。对于二通浮动活塞或浮动膜片阀来说,实际压差低于最小操作压力差时,阀门将开始关闭。(5)安全操作压力安全操作压力是指阀门可以承受的无损害的管路或系统压力。试验压力是安全工作压力的5倍。(6)流体最高温度阀门所允许使用的被控介质的最高工作温度。(7)阀体材质应确保不与介质起化学反应(腐蚀)。如果大气环境中含有腐蚀性气体,也需慎重选择阀体材质。(8)动作时间阀门从全闭到全开或反之的时间称为动作时间。它取决于阀门尺寸和操作形式、电力供给、流体黏度、入口压力和温度等。调节阀的附件

2.电磁阀的选择

可从以下三个方面选择电磁阀:按使用介质或功能选用电磁阀一般按使用介质及用途而标注名称,如可在蒸汽介质中使用的标为蒸汽电磁阀。常用电磁阀有如下品种:二位二通电磁阀。二位三通电磁阀、二位四通电磁阀、二位五通电磁阀、蒸汽电磁阀、微压电磁阀、制冷电磁阀、渣油电磁阀、高温电磁阀、真空电磁阀、煤气电磁阀、防爆电磁阀、船用电磁阀、防水电磁阀、脉冲电磁阀、不锈钢电磁阀、塑料电磁阀、自锁电磁阀、多功能电磁阀和组合电磁阀等。按电磁阀工作原理选用不同电磁阀适用于不同压力(压差)场合。调节阀的附件

按电磁阀口径选用一般电磁阀通径与工艺管道通径相同。在石油化工装置的联锁控制系统中,电磁阀一般用于操作仪表风去控制调节阀的动作。此时,电磁阀的通径也应与仪表风管的管径相同。若电磁阀上压降较大,在大口径时从节约与可靠性考虑,可选择比工艺管道通径小一档的电磁阀。除一般考虑工作介质的温度、黏度、悬浮物、腐蚀性、压力、压差等因素外,选用电磁阀还必须考虑下列问题:①

为防止线圈烧坏,应限制电磁阀每分钟通断的工作次数。②

介质进入导阀前,一般应先经过过滤器防止杂质堵塞阀门。③

介质压力低于电磁阀的最小工作压力时,介质不能通过阀门,只有当介质压力大于时最小工作压力才能通过阀门。④

电磁阀有电开型(通电打开)和电闭型(通电闭合)两种,未特别说明的,则一般为电开型。⑤

通常电磁阀是水平安装。若垂直安装,电磁阀将不能正常工作。调节阀的附件

3.电磁阀的动作原理(1)常闭式二通电磁阀的动作原理二通阀有一个入口和一个出口与管线连接,它可以使流体流过阀门或切断流体通道。它有两种结构:浮动膜片或活塞式,阀门需要一个最小压降,保持阀门开启;悬挂膜片或活塞式,靠电磁线圈磁芯机械地保持开启,阀门压差即使是零,阀门也能开启或保持开启。图1-5-38所示为直动式二通阀。在直动阀中,电磁线圈通电时,磁芯直接开启常闭阀的孔,阀门将在其最大的压力范围内操作。开启阀门需要的力与孔尺寸及流体压力成正比。孔尺寸增大,所需要的力也增大。因此,要开启大孔,又要保持电磁线圈尺寸小,应选用先导式电磁阀。调节阀的附件

图1-5-39所示的二通阀为先导式二通阀,这类阀门能借用管线压来操作一个先导孔和一个旁通孔。电磁线圈断电时,先导孔关闭,管线的压力通过旁通孔施压于活塞或膜片的顶部,提供一个阀座力,严密关闭阀门。电磁线圈通电时,磁芯开启先导孔,通过阀的出口消除活塞或膜片的顶部压力,管线压力本身将膜片或活塞推离主孔,开启阀门。调节阀的附件

(2)常闭式三通电磁阀的动作原理三通电磁阀有三个孔与管线连接,其中两个孔为输出孔(一个开启另一个关闭)。它们一般用于交替地向一个膜片阀或单动气缸施压或排压,见图1-5-40。三通电磁阀有三种操作方式:①

常闭阀断电时,压力口关闭,而排气口连到气缸口;阀通电时,压力口连到气缸口,而排气口关闭。②

常开阀断电时,压力口连到气缸口,而排气口关闭,阀通电时,压力口关闭,而气缸口连到排气口;③

通用结构允许阀连结成常闭或常开位置

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论