




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的一条渐近线方程是,则双曲线的离心率为()A. B. C. D.2.阅读下面的程序框图,运行相应的程序,程序运行输出的结果是()A.1.1 B.1 C.2.9 D.2.83.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是()A. B. C. D.4.下列图形中,不是三棱柱展开图的是()A. B. C. D.5.函数(且)的图象可能为()A. B. C. D.6.已知函数有两个不同的极值点,,若不等式有解,则的取值范围是()A. B.C. D.7.下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.1 B.2 C.3 D.48.设复数满足为虚数单位),则()A. B. C. D.9.设等差数列的前n项和为,且,,则()A.9 B.12 C. D.10.已知函数()的部分图象如图所示,且,则的最小值为()A. B.C. D.11.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金()A.多1斤 B.少1斤 C.多斤 D.少斤12.记等差数列的公差为,前项和为.若,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.展开式中的系数为_________.(用数字做答)14.函数的值域为_________.15.已知、为正实数,直线截圆所得的弦长为,则的最小值为__________.16.如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,为坐标原点,点为抛物线的焦点,且抛物线上点处的切线与圆相切于点(1)当直线的方程为时,求抛物线的方程;(2)当正数变化时,记分别为的面积,求的最小值.18.(12分)数列满足.(1)求数列的通项公式;(2)设,为的前n项和,求证:.19.(12分)设复数满足(为虚数单位),则的模为______.20.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.21.(12分)已知x,y,z均为正数.(1)若xy<1,证明:|x+z|⋅|y+z|>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.22.(10分)已知抛物线,焦点为,直线交抛物线于两点,交抛物线的准线于点,如图所示,当直线经过焦点时,点恰好是的中点,且.(1)求抛物线的方程;(2)点是原点,设直线的斜率分别是,当直线的纵截距为1时,有数列满足,设数列的前n项和为,已知存在正整数使得,求m的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】双曲线的渐近线方程是,所以,即,,即,,故选D.2.C【解析】
根据程序框图的模拟过程,写出每执行一次的运行结果,属于基础题.【详解】初始值,第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;第五次循环:,;第六次循环:,;第七次循环:,;第九次循环:,;第十次循环:,;所以输出.故选:C【点睛】本题考查了循环结构的程序框图的读取以及运行结果,属于基础题.3.C【解析】
先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.【详解】从6个球中摸出2个,共有种结果,两个球的号码之和是3的倍数,共有摸一次中奖的概率是,5个人摸奖,相当于发生5次试验,且每一次发生的概率是,有5人参与摸奖,恰好有2人获奖的概率是,故选:.【点睛】本题主要考查了次独立重复试验中恰好发生次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.4.C【解析】
根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.5.D【解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.6.C【解析】
先求导得(),由于函数有两个不同的极值点,,转化为方程有两个不相等的正实数根,根据,,,求出的取值范围,而有解,通过分裂参数法和构造新函数,通过利用导数研究单调性、最值,即可得出的取值范围.【详解】由题可得:(),因为函数有两个不同的极值点,,所以方程有两个不相等的正实数根,于是有解得.若不等式有解,所以因为.设,,故在上单调递增,故,所以,所以的取值范围是.故选:C.【点睛】本题考查利用导数研究函数单调性、最值来求参数取值范围,以及运用分离参数法和构造函数法,还考查分析和计算能力,有一定的难度.7.C【解析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.B【解析】
易得,分子分母同乘以分母的共轭复数即可.【详解】由已知,,所以.故选:B.【点睛】本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.9.A【解析】
由,可得以及,而,代入即可得到答案.【详解】设公差为d,则解得,所以.故选:A.【点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.10.A【解析】
是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得.【详解】由题意,,∴函数在轴右边的第一个零点为,在轴左边第一个零点是,∴的最小值是.故选:A.【点睛】本题考查三角函数的周期性,考查函数的对称性.函数的零点就是其图象对称中心的横坐标.11.C【解析】设这十等人所得黄金的重量从大到小依次组成等差数列则由等差数列的性质得,故选C12.C【解析】
由,和,可求得,从而求得和,再验证选项.【详解】因为,,所以解得,所以,所以,,,故选:C.【点睛】本题考查等差数列的通项公式、前项和公式,还考查运算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.210【解析】
转化,只有中含有,即得解.【详解】只有中含有,其中的系数为故答案为:210【点睛】本题考查了二项式系数的求解,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.14.【解析】
利用换元法,得到,利用导数求得函数的单调性和最值,即可得到函数的值域,得到答案.【详解】由题意,可得,令,,即,则,当时,,当时,,即在为增函数,在为减函数,又,,,故函数的值域为:.【点睛】本题主要考查了三角函数的最值,以及利用导数研究函数的单调性与最值,其中解答中合理利用换元法得到函数,再利用导数求解函数的单调性与最值是解答的关键,着重考查了推理与预算能力,属于基础题.15.【解析】
先根据弦长,半径,弦心距之间的关系列式求得,代入整理得,利用基本不等式求得最值.【详解】解:圆的圆心为,则到直线的距离为,由直线截圆所得的弦长为可得,整理得,解得或(舍去),令,又,当且仅当时,等号成立,则.故答案为:.【点睛】本题考查直线和圆的位置关系,考核基本不等式求最值,关键是对目标式进行变形,变成能用基本不等式求最值的形式,也可用换元法进行变形,是中档题.16.【解析】
由题意可知半球的半径与正四棱锥的高相等,可得正四棱锥的棱与半径的关系,进而可写出半球的半径与四棱锥体积的关系,进而求得结果.【详解】设所给半球的半径为,则四棱锥的高,则,由四棱锥的体积,半球的体积为:.【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)x2=4y.(2).【解析】试题解析:(Ⅰ)设点P(x0,),由x2=2py(p>0)得,y=,求导y′=,因为直线PQ的斜率为1,所以=1且x0--√2=0,解得p=2,所以抛物线C1的方程为x2=4y.(Ⅱ)因为点P处的切线方程为:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程为y=-x根据切线与圆切,得d=r,即,化简得x04=4x02+4p2,由方程组,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=点F(0,)到切线PQ的距离是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,当且仅当时取“=”号,即x02=4+2,此时,p=.所以的最小值为2+1.考点:求抛物线的方程,与抛物线有关的最值问题.18.(1)(2)证明见解析【解析】
(1)利用与的关系即可求解.(2)利用裂项求和法即可求解.【详解】解析:(1)当时,;当,,可得,又∵当时也成立,;(2),【点睛】本题主要考查了与的关系、裂项求和法,属于基础题.19.1【解析】
整理已知利用复数的除法运算方式计算,再由求模公式得答案.【详解】因为,即所以的模为1故答案为:1【点睛】本题考查复数的除法运算与求模,属于基础题.20.(1)曲线的直角坐标方程为;直线的直角坐标方程为(2)【解析】
(1)由公式可化极坐标方程为直角坐标方程,消参法可化参数方程为普通方程;(2)联立两曲线方程,解方程组得两交点坐标,从而得两点间距离.【详解】解:(1)曲线的直角坐标方程为直线的直角坐标方程为(2)据解,得或【点睛】本题考查极坐标与直角坐标的互化,考查参数方程与普通方程的互化,属于基础题.21.(1)证明见解析;(2)最小值为1【解析】
(1)利用基本不等式可得,再根据0<xy<1时,即可证明|x+z|⋅|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,从而求出2xy⋅2yz⋅2xz的最小值.【详解】(1)证明:∵x,y,z均为正数,∴|x+z|⋅|y+z|=(x+z)(y+z)≥=,当且仅当x=y=z时取等号.又∵0<xy<1,∴,∴|x+z|⋅|y+z|>4xyz;(2)∵=,即.∵,,,当且仅当x=y=z=1时取等号,∴,∴xy+yz+xz≥3,∴2xy⋅2yz⋅2xz=2xy+yz+xz≥1,∴2xy⋅2yz⋅2xz的最小值为1.【点睛】本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机床装备智能制造装备技术创新与产业发展考核试卷
- 无人驾驶环境感知-全面剖析
- 教育机构强制性条文实施计划
- 智能纺织系统设计-全面剖析
- 部编本四年级语文下册课堂互动计划
- 小学少先队职业体验活动计划
- 高校宿舍健康管理与防治措施
- 数字twins技术在会计核算中的实践应用-全面剖析
- 地热能利用技术进展-全面剖析
- 部编三年级下册语文家校合作计划
- 2022-2023学年湖北省武汉市重点中学5G联合体高一(下)期中英语试卷及参考答案
- 有机朗肯循环(ORC)中低温余热发电与工业余热利用
- 小学英语湘少版三年级起点《Unit 10 He has two feet.》获奖教学设计-四年级英语教案
- 零基础的住宅和城市设计智慧树知到答案章节测试2023年同济大学
- 小婉管乐小品《遇人不赎》台词剧本手稿
- 血液形态学图谱考核(ISO15189现场考核)
- 太平哨水利枢纽引水式水电站设计
- YC/T 425-2011烟用纸张尺寸的测定非接触式光学法
- GB/T 6109.2-2008漆包圆绕组线第2部分:155级聚酯漆包铜圆线
- GB/T 17747.1-2011天然气压缩因子的计算第1部分:导论和指南
- GB∕T 21489-2018 散粮汽车卸车装置
评论
0/150
提交评论