版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter1LimitsandTheirPropertiesLimits
Theword“limit”isusedineverydayconversationtodescribetheultimatebehaviorofsomething,asinthe“limitofone’sendurance”orthe“limitofone’spatience.”Inmathematics,theword“limit”hasasimilarbutmoreprecisemeaning.
Supposeyoudrive200miles,andittakesyou4hours.Thenyouraveragespeedis:Ifyoulookatyourspeedometerduringthistrip,itmightread65mph.Thisisyourinstantaneousspeed.1.1RatesofChangeandLimitsArockfallsfromahighcliff.Thepositionoftherockisgivenby:After2seconds:averagespeed:Whatistheinstantaneousspeedat2seconds?1.1RatesofChangeandLimitsforsomeverysmallchangeintwhereh=someverysmallchangeintWecanusetheTI-84toevaluatethisexpressionforsmallerandsmallervaluesofh.1.1RatesofChangeandLimits180164.16.00164.016.000164.0016.0000164.0002Wecanseethatthevelocityapproaches64ft/secashbecomesverysmall.Wesaythatthevelocityhasalimitingvalueof64ashapproacheszero.(Notethathneveractuallybecomeszero.)1.1RatesofChangeandLimitsThelimitashapproacheszero:01.1RatesofChangeandLimitsDefinition:LimitLetcandLberealnumbers.Thefunction
fhaslimitLasxapproachesc
if,foranygivenpositivenumberε,thereisapositivenumberδsuchthatforallx,1.1RatesofChangeandLimitsaLfDNE=DoesNotExistafL1L21.1RatesofChangeandLimitsDefinition:OneSidedLimitsLeft-HandLimit:ThelimitoffasxapproachesafromtheleftequalsLisdenotedRight-HandLimit:ThelimitoffasxapproachesafromtherightequalsLisdenoted1.1RatesofChangeandLimits1.1RatesofChangeandLimitsDefinition:Limitifandonlyif
and1.1RatesofChangeandLimitsDNE=DoesNotExistPossibleLimitSituationsafaf1.1RatesofChangeandLimits123412Atx=1:lefthandlimitrighthandlimitvalueofthefunction
doesnotexistbecausetheleftandrighthandlimitsdonotmatch!1.1RatesofChangeandLimitsAtx=2:lefthandlimitrighthandlimitvalueofthefunctionbecausetheleftandrighthandlimitsmatch.1234121.1RatesofChangeandLimitsAtx=3:lefthandlimitrighthandlimitvalueofthefunctionbecausetheleftandrighthandlimitsmatch.1234121.1RatesofChangeandLimitsLimitsGivenafunctionf(x),ifxapproaching3causesthefunctiontotakevaluesapproaching(orequalling)someparticularnumber,suchas10,thenwewillcall10thelimitofthefunctionandwriteInpractice,thetwosimplestwayswecanapproach3arefromtheleftorfromtheright.
LimitsForexample,thenumbers2.9,2.99,2.999,...approach3fromtheleft,whichwedenotebyx→3–,andthenumbers3.1,3.01,3.001,...approach3fromtheright,denotedbyx→3+.Suchlimitsarecalledone-sidedlimits.UsetablestofindExample1–FINDINGALIMITBYTABLES
Solution:Wemaketwotables,asshownbelow,onewithxapproaching3fromtheleft,andtheotherwithxapproaching3fromtheright.20Limits
IMPORTANT!Thistableshowswhatf(x)isdoingasxapproaches3.OrwehavethelimitofthefunctionasxapproachesWewritethisprocedurewiththefollowingnotation.x22.92.992.99933.0013.013.14f(x)89.89.989.998?10.00210.0210.212
Def:WewriteIfthefunctionalvalueoff(x)isclosetothesinglerealnumberLwheneverxiscloseto,butnotequalto,c.(oneithersideofc).
orasx→c,thenf(x)→L310HLimitsAsyouhavejustseenthegoodnewsisthatmanylimitscanbeevaluatedbydirectsubstitution.22LimitPropertiesTheserules,whichmaybeprovedfromthedefinitionoflimit,canbesummarizedasfollows. Forfunctionscomposedofaddition,subtraction,multiplication,division,powers,root,limitsmaybeevaluatedbydirectsubstitution,providedthattheresultingexpressionisdefined.Examples–FINDINGLIMITSBYDIRECTSUBSTITUTIONSubstitute4forx.Substitute6forx.Examples–FINDINGLIMITSBYDIRECTSUBSTITUTIONExample1FindExample2Find
Somealgebraicrulesoflimits1Example
Somealgebraicrulesoflimits2ExampleSomealgebraicrulesoflimits3ExampleExample3:Find
Example4Findifyoupluginsomeverysmallvaluesfor,youwillseethisfunctionapproaches.Anditdoes'ntmatterwhetherispositiveornegative,youstillget,lookatthegraphof
Thedenominatorispositiveinbothcases,
sothelimitisthesame.Example5
Becausetheright-handlimitisnotequaltotheleft-handlimit,thelimitdoesnotexist.Therearesomeveryimportantpointsthatweneedtoemphasizefromthelasttwoexamples.1)Iftheleft-handlimitofafunctionisnotequaltotheright-handlimitofthefunction,thenthelimitdoesnotexist.2)Alimitequaltoinfinityisnotthesameasalimitthatdoesnotexist,butsometimesyouwillseetheexpression"nolimit",whichservesbothpurposes.If,thelimit,technically,doesnotexist.3)Ifkisapositiveconstant,thenanddoesnotexist.4)Ifkisapositiveconstant,thenandExample6:Find
As
getsbiggerandbigger,thevalueofthefunctiongetssmallerandsmaller.Therefore,Example7:Find
It'sthesamesituationastheoneinExample6;asdecrease(approachesnegativeinfinity),thevalueofthefunctionincrease(approachesaero).Wewritehis,Somealgebraicrulesoflimits4Example8Find
Whenyouhavevariablesinboththetopandbottom,youcan'tjustplugintotheexpression.Youwillget.Wesolvethisbyusingthefollowingtechnique:Whenanexpressionconsistsofapolynomialsdividedbyanotherpolynomials,divideeachtermofthenumeratorandthedenominatorbythehighestpowerofthatappearsintheexpression.Thehighestpowerofinthiscaseis,sowedivideeverytermintheexpression(bothtopandbottom)by,likeso:Nowwhenwetalkthelimit,thetwotermscontainingapproachzero.We'releftwith.
Example9:FindDivideezchtermby.Youget:
Example10:FindDivideezchtermby.
Theotherpowersdon'tmatter,becausethey'reallgoingtodisappear.Nowwehavethreenewrulesforevaluatingthelimitofarationalexpressionasapproachesinfinity:1)Ifthehighestpowerofinarationalexpressionisinthenumerator,thenthelimitasapproachesinfinityisinfinity.Example:2)Ifthehighestpowerofinarationalexpressionisinthedenominator,thenthelimitasapproachesinfinityiszero.Example:3)Ifthehighestpowerofinarationalexpressionisthesameinboththenumeratoranddenominator,thenthelimitasapproachesinfinityisthecoefficientofthehighestterminthenumratordividedbythecoefficientofthehighestterminthedenomiator.Example:1.2LimitsoftrigonometricfunctionsRuleNo.1:Thismayseemstrange,butifyoulookatthegraphsoftheyhaveapproximatelythesameslopeneartheorigin(asgetsclosertozero).Sinceandthesineofareaboutthesameasapproacheszero,theirquotientwillbeveryclosetoone.Furthermore,because(reviewcosinevaluesifyoudon'tgetthis!),weknowthatNowwewillfindasecondrule.Let'sevaluatethelimitFirst,multiplythetopandbottomby.
Weget:
Nowsimplifythelimitto:Next,wecanusethetrigonometricidentityandrewritethelimitas:Now,breakthisintotwolimits:Thefirstlimitis-1(seeRuleNo.1)andthesecondis0,sothelimitis0.RuleNo.2:Example11:FindExample12:FindRuleNo.3:RuleNo.4:Example13:FindProblem1.FindProblem2.FindProblem3.FindProblem4.FindProblem5.FindProblem6.FindProblem7.FindTheorem1.2PropertiesofLimitsTheorem1.3LimitsofPolynomialandRationalFunctionsUseyourcalculatortodeterminethefollowing:(a)(b)1.2Limitsoftrigonometricfunctions1DNESupposethatcisaconstantandthefollowinglimitsexist2.1RatesofChangeandLimitsSupposethatcisaconstantandthefollowinglimitsexist2.1RatesofChangeandLimitswherenisapositiveinteger.wherenisapositiveinteger.wherenisapositiveinteger.wherenisapositiveinteger.2.1RatesofChangeandLimitsEvaluatethefollowinglimits.Justifyeachstepusingthelawsoflimits.16-5/4262.1RatesofChangeandLimitsIffisarationalfunctionorcomplex:Eliminatecommonfactors.Performlongdivision.Simplifythefunction(ifacomplexfraction)Ifradicalsexist,rationalizethenumeratorordenominator.Ifabsolutevaluesexist,useone-sidedlimitsandthefollowingproperty.2.1RatesofChangeandLimits3/2DNE1/2DNE2.1RatesofChangeandLimitsTheoremIff(x)g(x)whenxisneara(exceptpossiblyata)andthelimitsoffandgbothexistasxapproachesa,then
2.1RatesofChangeandLimitsTheSqueeze(Sandwich)TheoremIff(x)g(x)h(x)whenxisneara(exceptpossiblyata)andthen2.1RatesofChangeandLimitsShowthat:Themaximumvalueofsineis1,soTheminimumvalueofsineis-1,soSo:2.1RatesofChangeandLimitsBythesandwichtheorem:2.1RatesofChangeandLimits2.1RatesofChangeandLimitsTherefore,2.1RatesofChangeandLimitssimplifyanddividebysinθ2.1RatesofChangeandLimits2.1RatesofChangeandLimitsP(cos,sin)Q(1,0)Thenotationmeansthatthevaluesoff(x)canbemadearbitrarilylarge(aslargeasweplease)bytakingxsufficientlyclosetoa(oneitherside)butnotequaltoa.2.2LimitsInvolvingInfinityafVerticalAsymptote2.2LimitsInvolvingInfinityVerticalAsymptoteThelinex=aiscalledaverticalasymptoteofthecurvey=f(x)ifatleastoneofthefollowingstatementsistrue:2.2LimitsInvolvingInfinityf(x)=lnxhasaverticalasymptoteatx=0sincef(x)=tanxhasaverticalasymptoteatx=/2since2.2LimitsInvolvingInfinity2.2LimitsInvolvingInfinity-∞x=3x=1DeterminetheequationsoftheverticalasymptotesofFindthelimitLetfbeafunctiondefinedonsomeinterval(a,∞).Thenmeansthatthevalueoff(x)canbemadeasclosetoLaswelikebytakingxsufficientlylarge.2.2LimitsInvolvingInfinityHorizontalAsymptoteLf2.2LimitsInvolvingInfinity2.2LimitsInvolvingInfinityDefinitionEndBehaviorModelSupposethatfisarationalfunctionasfollows:HorizontalAsymptoteTheliney=Liscalledahorizontalasymptoteofthecurvey=f(x)ifeitheror2.2LimitsInvolvingInfinityf(x)=exhasahorizontalasymptoteaty=0since2.2LimitsInvolvingInfinityIfnisapositiveinteger,then2.2LimitsInvolvingInfinityFindthelimit 2.2LimitsInvolvingInfinity-1/32/31/3Findthelimit 2.2LimitsInvolvingInfinityUsesqueezetheorem2.2LimitsInvolvingInfinityAfunctioniscontinuousatapointifthelimitisthesameasthevalueofthefunction.Thisfunctionhasdiscontinuitiesatx=1andx=2.Itiscontinuousatx=0andx=4,becausetheone-sidedlimitsmatchthevalueofthefunction1234122.3ContinuityDefinition:ContinuityAfunctioniscontinuousatanumberaifThatis,1. f(a)isdefined2. exists3. 2.3ContinuityDefinition:OneSidedContinuityAfunctionfiscontinuousfromtherightatanumberaifandfiscontinuousfromtheleftataif2.3Continuity1.Removablediscontinuity2.3Continuity2.Infinitediscontinuity2.3Continuity3.Jumpdiscontinuity2.3Continuity4.Oscillatingdiscontinuity2.3ContinuityDefinition:ContinuityOnAnIntervalAfunctionfiscontinuousonanintervalifitiscontinuousateverynumberintheinterval.(Iffisdefinedononesideofanendpointoftheinterval,weunderstandcontinuousattheendpointstomeancontinuousfromtherightorcontinuousfromtheleft).2.3ContinuityTheorem
f+g
f–g
cf
fg
f/gifg(a)0
f(g(x))Iffandgarecontinuousataandcisaconstant,thenthefollowingfunctionsarealsocontinuousata:2.3ContinuityTheoremAnypolynomialiscontinuouseverywhere;thatis,itiscontinuouson=(-∞,∞).Anyrationalfunctioniscontinuouswheneveritisdefined;thatis,itiscontinuousonitsdomain.2.3ContinuityAnyofthefollowingtypesoffunctionsarecontinuousateverynumberintheirdomain:Polynomials;RationalFunctions,RootFunctions;TrigonometricFunctions;InverseTrigonometricFunctions;ExponentialFunctions;andLogarithmicFunctions.2.3ContinuityIffiscontinuousatband ,then .Inotherwords,2.3ContinuityIfgiscontinuousataandfiscontinuousatg(a),thenthecompositefunctionf(g(x))iscontinuousata.2.3ContinuityTheIntermediateValueTheoremSupposethatfiscontinuousontheclosedinterval[a,b]andletNbeanynumberbetweenf(a)andf(b).Thenthereexistsanumbercin(a,b)suchthatf(c)=N.afbf(a)f(b)cf(c)=N2.3ContinuityUsetheIntermediateValueTheoremtoshowthatthereisarootofthegivenequationinthespecifiedinterval.2.3ContinuityGraphContinuousatx=0?
GraphContinuousatx=0?00yesundefined0noundefinedDNEnoundefined1no00yesundefined1noundefinedDNEno0DNEnoundefined0noDefinition:LimitLetcandLberealnumbers.Thefunction
fhaslimitLasxapproachesc
if,foranygivenpositivenumberε,thereisapositivenumberδsuchthatforallx,2.3ContinuitySolutionSetc=1andf(x)=5x-3andL=2.Foranygiven>0,thereexistsa>0suchthat0<|x-1|<whenever|f(x)-2|<2.3Continuity|(5x-3)-2|<|5x-5|<5|x-1|<|x-1|</5Soif=/51-11+2+2-22.3ContinuitySolutionSetc=2andf(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地理信息系统监控施工合同3篇
- 全新手船舶买卖协议3篇
- 合伙购买厂房协议书3篇
- 商铺房屋出售合同3篇
- 公司购买白酒合同范例
- 分居不分手协议3篇
- 办公用品购销协议书示例3篇
- 学校食堂和小卖部承包合同3篇
- 协作研发合同书3篇
- 草场买卖合同范例
- 城市建设苗木吊装安全方案
- 中医院医生作风建设工作方案(6篇)
- DIY手工坊创业项目计划书
- (高清版)DB21∕T 1795-2021 污水源热泵系统工程技术规程
- 【MOOC】商业银行管理学-湖南大学 中国大学慕课MOOC答案
- 2024年山西建设投资集团有限公司校园招聘考试笔试试题及答案解析
- 护理脊柱外科出科
- 2024江苏盐城港控股集团限公司招聘23人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年陕西省初中学业水平考试·数学
- 2024年三支一扶考试基本能力测验试题及解答参考
- 快递员合同协议书格式
评论
0/150
提交评论