版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ComputerControlSystemDesign-2PresentedBy:MJunaidKhan
AssociateProfessor,Dept.ofElectronicandPowerEngineeringcontactjunaidationalUniversityofScienceandTechnologyPakistan1ContentsReviewoflastlectureDesignbyEmulation-IndirectDesignMethodMethodstoDiscretizeContinuousControllerForwardRectangularRuleBackwardRectangularRuleTrapezoidalRuleBilinearORTustin’sTransformationZOHEquivalent–StepInvarianceMethodPoleZeroMapping–MatchedPoleZeroMappingBilinearTransformationwithFrequencyPre-warpingAnalyzingPerformanceofDiscreteSystemNumericalIntegrationMethods2Review-
TwoWaystoDesignaDigitalControllerIndirectDesign:
Firstdesignacontinuous
time
controllerandthendiscretizeit usingsomediscretization
techniquetoobtainanequivalent digitalcontroller.DirectDesign:
Discretizetheplantfirsttoobtainadiscrete-timesystemand thenapplydigital
controlsystemdesigntechniquesIndirectDesignDirectDesign3Review-
StrategyofIndirectDesignHavingacontinuoustransferfunctionD(s),findthebestdiscreteequivalentD(z)usinganysuitablemethodofconversion.Judgetheeffectivenessofthedigitaldesignbycomparingit’sfrequencyresponsewiththatofD(s)SelectedsamplingfrequencyiskepthigherthanfrequencyoftheinputsignalsForinputsignalswhichareathighfrequencyi.e.approachingtheNyquistrate(fs/2)orfoldingfrequency,thefidelityofD(z)comparedwithD(s)willdeteriorate.Thismeansthat:
ifthesamplingfrequency‘fs’islessthandoubleofsignalfrequency,theperformanceofD(z)willbebad.4Review-
DiscreteApproximationsForwardRectangularRule:
Itissimpletoapply,butastablesystemcanbecomeunstable,soitisimpracticaltousethisapproximation.BackwardRectangularRule
:Astablesystemwillresultinastablesystem,buttherearelargedistortionsindynamicresponseandfrequencyresponsepropertiesTrapezoidalRule
:Astablesystemwillremainstable,howeveritcancausefrequencydistortionorwarping.Frequencypre-warpingcandecreasethedistortioninfrequencyresponse.5Review-DiscreteApproximations
RemarksForwardRectangularRuleisnotusedinpracticalapplications.BackwardRectangularRulealwaysmapsastablecontinuouscontrollertoastablediscretecontroller.However,someunstablecontinuouscontrollercanalsobetransformedintostablediscretecontrollersThebilineartransformation(trapezoidalorTustin’sapproximation)mapsthelefthalfsplaneintotheunitdisc.Hence,stablecontinuouscontrollersareapproximatedbystablediscretecontrollersandunstablecontinuouscontrollersaremappedtounstablediscretecontrollersInpractice,theTustin’sapproximation(bilineartransformation)istheapproximationofchoiceforconvertingcontinuous-timecontrollerstodiscrete-timecontrollers.Infact,somecomputer-aidedprograms(e.g.MATLAB)don’tevenhavetheoptiontoapproximatewithforwardorbackwarddifferencemethods6IndirectdesignmethodStrategies:1.EmulationbyZOHEquivalent-Step-invariancemethod
Thismethodsimplyassumesthatthesignalenteringthemicroprocessorisconstantoverthesamplingtime(thefunctionoftheZOHDAContheoutputsignal)7Indirectdesignmethod
ZOHEquivalentorStep-invariancemethodConvertD(s)to(D(z)(suitableforimplementationonamicroprocessor)basedonasamplingtimeof0.1secondbyZOHmethod.Example…8Indirectdesignmethod
ZOHEquivalentorStep-invariancemethodRemarks:
1.Astablesystemwillremainstable2.Frequencyfoldingphenomenamayoccur,butthankstothelow-passcharacteristicsoftheZOH,itisalittlebetter.3.Complexcomputationforlarge-scalesystems4.Steady-statevalueisinvariant,i.e., G(s)|s=0=H(z)|z=19Indirectdesignmethod2.PoleandZeroMappingSinceeverypoleandzeroofD(s)inthes-planehasitsequivalentpositioninthez-planethroughthemapping:thenitsseemsreasonabletoformD(z)fromD(s)bymappingthepositionsofthepolesandzeroesinterms's'topositionsinthez-planeusingequationsabove.AsimpleexamplewilldemonstratetheMethod.IfThenthepositionsofthefinitepolesandzeroesofD(s)are:10Indirectdesignmethod2.PoleandZeroMappingUsingthemapping,thesemaptopositionsinthes-planegivenby:ThusD(z)isgivenby:ThevalueofK'isselectedtoensurethegainofD(s)andD(z)arethesameatsomespecificfrequency,usuallyzerofrequency(DCgain).TheDCgaininthes-planeisdeterminedwhens=0andinthez-planewhenz=111IndirectdesignmethodPoleandZeroMappingThusforequalDCgain:Andthustheequivalenttransferfunctionisgivenby:12IndirectdesignmethodThisisapopularmethodandhasavalidrational,andfortransferfunctionswithasmanyzeroesaspolesinD(s)itisareasonableapproach.Howeverinmanycontrollertransferfunctionsthisisnotthecase.Forexamplethetransferfunction:Ithastwopoless=0andbandtwozeroess=aand∞.Thedifficultyismappingthesat∞.Somedesignersplaceitatz=0andsomeatz=-1whichbecauseofthenatureofthez-plane(duetothepeculiarnatureofthemappingequations)arebothreasonabledecisions.However,thisisnotverysatisfactoryandevenwithoutthisproblemthemethoddoesnotalwaysworkPoleandZeroMapping13IndirectdesignmethodExample2…Obtainanexpressionforthecontrollerindiscreteformusingthepole/zeromappingmethod.Expressyouranswersinrecursiveformsuitableforimplementationonamicroprocessor.PoleandZeroMapping14IndirectdesignmethodTheBilinearorTustin'sTransformationInsteadofassumingtheinputsignalisheldconstantbetweensamples(theZOHmethod),thismethodassumesthattheprocessismoreaccurateifastraightlinebetweensuccessivesamplesoftheinputisconsidered(sameasinTrapezoidalMethod)andisabetterapproximationtowhatishappeningbetweensamplesasshownbelow:15IndirectdesignmethodTheBilinearorTustin'sTransformationTustinsuggestedthatforthesampledsystemtheprocessofsignalintegrationcanbeapproximatedby:Intheaboveyrepresenttheintegralofx.Takingthez-transformoftheaboveandre-arrangingintotransferfunctionformgives:16IndirectdesignmethodTheBilinearorTustin'sTransformationIntegrationincontinuoussystemsisrepresentedbytheLaplacetransferfunction1/s
,hencethemappingfromthes-domaintothez-domainisapproximatedby:yrepresenttheintegralofx.Takingthez-transformoftheaboveandRe-arrangingintotransferfunctionformgives:17IndirectdesignmethodTheBilinearorTustin'sTransformationThisEquationisTustin'smappingandtheideaisthateverywheresappearsinD(s),theequationissubstitutedforit.18Indirectdesignmethod
Designexample:19Indirectdesignmethod
Designexample:20Indirectdesignmethod
Designexample:CalculatingdesiredcontrollerparametersTheclosed-looptransferfunctionofthecruisecontrolsystemwiththePIcontrollaw,i.e.,21Indirectdesignmethod
Designexample:VerificationthroughSIMULINKTheclosed-looptransferfunctionofthecruisecontrolsystemwiththePIcontrollaw,i.e.,22Indirectdesignmethod
Designexample:Digitalcontrollerwithasamplingrate30timesthebandwidth23Indirectdesignmethod
Designexample:Digitalcontrollerwithasamplingrate6timesthebandwidth24SummaryIndirectDigitalcontrollerdesigncanbeobtainedasfollows: Approximationusingforwardrectangularrule
Approximationusingbackwardrectangularrule
DesignbyEmulationwithZOH
Designthroughpole-zeromapping
DesignUsingBilinearTransformationThemethodoftransformationplaysasignificantroleintheperformanceoftheobtaineddigitalsystemChoiceofsamplingtime/frequencyplaysamajorroleintheperformanceoftheobtaineddigitalsystem25Indirectdesignmethod
FrequencyWarpinginBilinearTransformationNotethattheentire
axismapsintoonecompleterevolutionoftheunitcircle.
(mapsaxisintoinfinitenumberofrevolutionsoftheunitcircle)Bilinearand
transformationshaveconsiderabledifferencesbetweenthemintheirtransientandfrequencyresponsecharacteristics.26Indirectdesignmethod
FrequencyWarping-DefinitionFrequencywarpingtransformationisaprocesswhereonespectralrepresentationonacertainfrequencyscale(e.g.,z,s-domain)andwithacertainfrequencyresolution(mostoftenuniform)istransformedtoanotherrepresentationonanewfrequencyscale.Thenewrepresentationhasauniformfrequencyresolutiononthenewscale-however,ithasanon-uniformresolutionwhenobservedfromtheoldscale.Thewarpingfunctiondefineshowindividualfrequencycomponentsanddifferentfrequencyrangesaremappedonthenewscale.Italsodefineshowtheresolutionofthenewrepresentationisallocated,i.e.whichrangesintheoriginalrepresentationarecompressed(shrinked,resolutionreduced)andwhichexpanded(stretched,resolutionincreased).27Indirectdesignmethod
FrequencyWarpingFrequencyWarping
Itiseasytocheckthatthebilineartransformgivesaone-to-one,order-preserving,conformalmapbetweentheanalogfrequencyaxis
andthe
digitalfrequencyaxis
,where
isthesamplinginterval.Therefore,theamplituderesponsetakesonexactlythesamevaluesoverbothaxes,withtheonlydefectbeingafrequencywarpingsuchthatequalincrementsalongtheunitcircleinthe
planecorrespondtolargerandlarger
bandwidthsalongthe
axisinthe
plane.Somekindoffrequencywarpingisobviouslyunavoidableinanyone-to-onemapbecausetheanalogfrequencyaxisisinfinitewhilethedigitalfrequencyaxisisfinite.Therelationbetweentheanaloganddigitalfrequencyaxesmaybederivedimmediately28Indirectdesignmethod
FrequencyWarpingForFrequencypre-warping,thecontinuoustimefilterisUsingbilinear/Tustintransformation,transferfunctioninz-domainisSetComparingfrequencyresponsesThisshowsthefrequencydistortionorwarping29NowifisverysmallAndifTheresponsesareequalwhenalsocalledpre-warpingequalityIndirectdesignmethod
FrequencyWarping30Indirectdesignmethod
FrequencyPre-WarpingProcedureforpre-warping1.
Warpthefrequencyscalebeforetransforming2.
TransformusingBilinear31Indirectdesignmethod
FrequencyPre-WarpingExampleAssumethattheintegrator
hastobeimplementedasadigitalfilterUsingBilinearTransformationPre-warpinggivesThefrequencyfunctionofisgivenby:32Indirectdesignmethod
FrequencyPre-WarpingExampleAssumethattheintegrator
hastobeimplementedasadigitalfilterUsingBilinearTransformationwithpre-warpingThefrequencyfunctionAt:Thedistortioninthefrequencyresponsecanbecorrectedatasinglefrequencyusingthepre-warpingequality33Indirectdesignmethod
FrequencyPre-WarpingRemarks1.Thepre-warpingequalityisgivenby3.Thechoiceofpre-warpingfrequencydependsonthemappedfilter4.Incontrolapplications,asuitablechoiceofisthe3-dBfrequencyforaPIorPDcontrollerandtheupper3-dBfrequencyforaPIDcontroller5.InMATLAB,thebilineartransformationisaccomplishedusingthefollowingcommand>>Gd=c2d(Gc,T,‘tustin’)6.Ifpre-warpingisrequestedatafrequencyw,thenthecommandis:>>Gd=c2d(Gc,T,‘prewarp’,w)2.Thedistortioninthefrequencyresponsecanbecorrectedatasinglefrequencyusingthepre-warpingequality34EquivalentDiscreteTimeFiltersforaContinuousTimeFilterMappingMethodMappingEquationEquivalentDiscreteTimeFiltersfor
ForwardRectangularRule
NotrecommendedBackwardRectangularRuleTrapezoidalRuleBilinear/Tustin35EquivalentDiscreteTimeFiltersforaContinuousTimeFilterMappingMethodMappingEquationEquivalentDiscreteTimeFiltersforBilinear/TustinBilinearwithfrequencyprewarpingZOHEquivalentorStepInvarianceMatchedPoleZeroMappingApole/zeroats=-aismappedtoAninfinitepole/zeroismappedtoz=-1
36Example1:bode(1,[11])holdondbode([11],[3-1],1)Indirectdesignmethod37Example2:sys_c=tf([119],[129]);s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业停薪留职合同范例
- 2024年度健身房设施建设及管理定制合同
- 再见了 亲人课件
- 2024年度汽车装潢店装修设计合同
- 《钢结构的发展》课件
- 2024年度版权转让与授权播放协议3篇
- 2024年度短视频平台运营与推广协议
- 2024年度电子商务产业园杭州品牌合作合同
- 2024年度荒山绿化项目承包合同
- 债券市场研究系列:2024年10月图说债市月报:多空交织债券收益率涨跌互现违约率小幅抬升
- 《中级财务会计(二)》作业册形成性考核册国家开放大学电大
- 儿化音变课件
- 生化武器课件
- 哌啶(CAS:110-89-4)理化性质及危险特性表
- NY∕T 3349-2021 畜禽屠宰加工人员岗位技能要求
- 2019智慧树知到《中式面点制作工艺》章节答案
- 有效教学之BOPPPS-模式课件
- 餐饮食品安全管理人员必备知识考试题及答案
- 剧本写作课件
- ASTM-G154-2006-非金属材料紫外线曝光用荧光设备使用标准惯例
- 职业生涯人物访谈报告(采访教师)
评论
0/150
提交评论