山西省长治市第十八中学2021年高一数学文下学期期末试题含解析_第1页
山西省长治市第十八中学2021年高一数学文下学期期末试题含解析_第2页
山西省长治市第十八中学2021年高一数学文下学期期末试题含解析_第3页
山西省长治市第十八中学2021年高一数学文下学期期末试题含解析_第4页
山西省长治市第十八中学2021年高一数学文下学期期末试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省长治市第十八中学2021年高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.判断下列各命题的真假:(1)向量的长度与向量的长度相等;(2)向量与向量平行,则与的方向相同或相反;(3)两个有共同起点的而且相等的向量,其终点必相同;(4)两个有共同终点的向量,一定是共线向量;(5)向量和向量是共线向量,则点A、B、C、D必在同一条直线上;(6)有向线段就是向量,向量就是有向线段.其中假命题的个数为()A、2个B、3个C、4个D、5个

参考答案:C2.已知数列{an}满足,且,则(

)A.3

B.-3

C.

D.参考答案:B数列满足,可得,所以数列是等差数列,公差为,,所以.

3.函数f(x)=2x﹣x2的零点个数为()A.0个 B.1个 C.2个 D.3个参考答案:D【考点】函数零点的判定定理.【分析】本题考查的是函数零点的个数判定问题.在解答时,可先结合函数的特点将问题转化为研究两个函数图象交点的问题.继而问题可获得解答.【解答】解:由题意可知:要研究函数f(x)=x2﹣2x的零点个数,只需研究函数y=2x,y=x2的图象交点个数即可.画出函数y=2x,y=x2的图象由图象可得有3个交点,如第一象限的A(2,4),B(4,16)及第二象限的点C.故选:D.

【点评】本题考查函数的零点个数的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.4.在△ABC中,内角A,B,C的对边分别为a,b,c.若asinBcosC+csinBcosA=b,且a>b,则∠B=()参考答案:A5.已知函数满足对任意的实数x1≠x2,都有成立,则实数a的取值范围为()A. B.(-∞,2)C.(-∞,2]

D.参考答案:A略6.已知集合,则A.

B.

C.

D.参考答案:C7.若,,则下列不等式中成立的是().A. B. C. D.参考答案:D解::可能为.:不一定大于零.:正负.:成立.8.设点M是线段BC的中点,点A在BC外,,,则(

)A.2

B.4

C.8

D.1参考答案:A9.下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是()A.f(x)=x﹣1,g(x)= B.f(x)=2x﹣1,g(x)=2x+1C.f(x)=x2,g(x)= D.f(x)=1,g(x)=x0参考答案:C考点: 判断两个函数是否为同一函数.专题: 函数的性质及应用.分析: 分别判断两个函数的定义域和对应法则是否完全相同即可.解答: 解:A.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.B.函数f(x)和g(x)的定义域为R,两个函数的定义域相同,但对应法则不相同,不是同一函数.C.函数g(x)=x2,两个函数的定义域相同,对应法则相同,是同一函数.D.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.故选C.点评: 本题主要考查判断两个函数是否为同一函数,判断的依据是判断两个函数的定义域和对应法则是否完全相同.10.已知数列1,,,,…,,…,则是它的(

).A.第22项

B.第23项

C.第24项

D.第28项参考答案:B试题分析:由数列前几项可知,令得二、填空题:本大题共7小题,每小题4分,共28分11.某商场对顾客实行购物优惠活动,规定一次购物付款总额,①如果不超过200元,则不予以优惠,②如果超过200元,但不超过500元,则按原价给予9折优惠,③如果超过500元,则其中500元按第②条给予优惠,超过500元部分给予7折优惠;某人两次去购物,分别付款168元和423元,假设他只去一次购买上述同样的商品,则应付款是__________元.参考答案:546.6【知识点】函数模型及其应用解:某人两次去购物,分别付款168元和423元,原价分别为168元和470元。

所以原价共638元。

所以需要付款元。

故答案为:546.612.已知函数,那么=.参考答案:【考点】函数的值.【专题】计算题;压轴题.【分析】根据所求关系式的形式可先求f(),然后求出f(x)+f()为定值,最后即可求出所求.【解答】解:∵,∴f()=∴f(x)+f()=1∴f(2)+f()=1,f(3)+f()=1,f(4)+f()=1,f(1)=∴=故答案为:【点评】本题主要考查了函数的值的求解,找出规律进行解题可简化计算,当项数较少时也可逐一进行求解,属于基础题.13.一个三角形的三条边成等比数列,那么,公比q的取值范围是__________.参考答案:【详解】设三边按递增顺序排列为,其中.则,即.解得.由q≥1知q的取值范围是1≤q<.设三边按递减顺序排列为,其中.则,即.解得.综上所述,.14.幂函数的图象经过点,则的解析式是

.参考答案:15.已知三个不等式:①,

2,3(其中a,b,c,d均为实数)以其中两个作为条件,余下一个作为结论,那么一定可以组成____个正确的命题.参考答案:10.3

略16.已知,且,则=__________.参考答案:

17.如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.此人到达当日空气质量优良的概率.参考答案:【考点】古典概型及其概率计算公式.【分析】由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案.【解答】解:由图看出,1日至13日13天的时间内,空气质量优良的是1日、2日、3日、7日、12日、13日共6天.由古典概型概率计算公式得,此人到达当日空气质量优良的概率P=;故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数f(x)=|f1(x)﹣f2(x)|,其中幂函数f1(x)的图象过点(2,),且函数f2(x)=ax+b(a,b∈R).(1)当a=0,b=1时,写出函数f(x)的单调区间;(2)设μ为常数,a为关于x的偶函数y=log4[()x+μ?2x](x∈R)的最小值,函数f(x)在[0,4]上的最大值为u(b),求函数u(b)的最小值;(3)若对于任意x∈[0,1],均有|f2(x)|≤1,求代数式(a+1)(b+1)的取值范围.参考答案:【考点】利用导数研究函数的单调性;幂函数的概念、解析式、定义域、值域;函数与方程的综合运用;导数在最大值、最小值问题中的应用.【专题】计算题;规律型;分类讨论;转化思想;综合法;函数的性质及应用.【分析】(1)求出幂函数的解析式以及一次函数的解析式,化简函数f(x),然后求解单调区间.(2)利用偶函数求出μ,求出最小值a,求出函数的最大值的表达式,然后再求解最大值的表达式的最小值.(3)利用已知条件,转化求出b的范围,然后通过基本不等式以及函数的最值,通过分类讨论求解即可.【解答】解:(1)幂函数f1(x)的图象过点(2,),可得,a=.f1(x)=,函数f2(x)=1.函数f(x)=|﹣1|=,函数的单调增区间为:[1,+∞),单调减区间:[0,1).(2)y=log4[()x+μ?2x]是偶函数,可得log4[()x+μ?2x]=log4[()﹣x+μ?2﹣x],可得μ=1.∴y=log4[()x+2x],()x+2x≥2,当且仅当x=0,函数取得最小值a=.f1(x)=,函数f2(x)=+b.函数f(x)=|f1(x)﹣f2(x)|=|﹣b|,x∈[0,4],令h(x)=﹣b,x∈[0,4],h′(x)=,令=0,解得x=1,当x∈(0,1)时,h′(x)>0函数是增函数,当x∈(1,4)时,h′(x)<0,函数是减函数.h(x)的极大值为:h(1)=,最小值为h(0)=h(4)=﹣b,函数f(x)在[0,4]上的最大值为u(b)=,函数u(b)的最小值:.(3)对于任意x∈[0,1],均有|f2(x)|≤1,即对于任意x∈[0,1],均有|ax+b|≤1,当a>0时,显然b≥1不成立,①当1>b≥0时,对于任意x∈[0,1],均有|ax+b|≤1,0≤a≤1,可得0<a+b≤1,则(a+1)(b+1)≤≤,此时a=b=.(a+1)(b+1)∈[1,].②b∈[﹣,0),对于任意x∈[0,1],均有|ax+b|≤1,转化为:0≤a+b≤1,则(a+1)(b+1)∈[,2),a=1,b=0时(a+1)(b+1)取最大值2.a=,b=﹣,(a+1)(b+1)取得最小值.③b∈[﹣1,﹣),对于任意x∈[0,1],均有|ax+b|≤1,转化为:x=0,|b|≤1恒成立.﹣1<a+b≤1,(a+1)>0,(b+1)>0,则(a+1)(b+1)≤,≤≤,则(a+1)(b+1)∈[,],④当b<﹣1时,对于任意x∈[0,1],|ax+b|≤1,不恒成立.当a=0时,可得|b|≤1,(a+1)(b+1)∈[0,2].当a<0时,如果|b|>1,对于任意x∈[0,1],不恒有|ax+b|≤1,则|b|≤1,当0≤b≤1时,a∈[﹣1,0)对于任意x∈[0,1],均有|ax+b|≤1,a+1∈[0,1),b+1∈[1,2].(a+1)(b+1)∈[0,2).﹣1<b<0,可得|a+b|≤1.可得﹣1≤a+b≤1,a+1∈[0,1),b+1∈(0,1).(a+1)(b+1)∈(0,1).综上:代数式(a+1)(b+1)的取值范围:[0,].【点评】本题考查函数的导数的综合应用,函数的最值,分类讨论以及转化思想的应用,考查分析问题解决问题的能力.19.如图,在三棱锥A-BCD中,E,F分别为棱BC,CD上的中点.(1)求证:EF∥平面ABD;(2)若平面BCD,求证:平面平面ACD.参考答案:(1)证明见解析;(2)证明见解析.【分析】(1)根据线面平行的判定定理,在平面中找的平行线,转化为线线平行的证明;(2)根据面面垂直的判定定理,转化为平面.【详解】(1),分别是,的中点,;又平面,平面,平面.(2),,;平面,;又平面,平面,平面,又平面,平面平面.【点睛】本题考查了面面垂直的证明,难点在于转化为线面垂直,方法:结合已知条件,选定其中一个面为垂面,在另外一个面中找垂线,不行再换另外一个面.20.已知等比数列{an}的前n项和为Sn,,,且.(1)求{an}的通项公式;(2)是否存在正整数n,使得成立?若存在,求出n的最小值;若不存在,请说明理由.参考答案:(1);(2)存在,【分析】(1)根据条件求解出公比,然后写出等比数列通项;(2)先表示出,然后考虑的的最小值.【详解】(1)因为,所以或,又,则,所以;(2)因为,则,当为偶数时有不符合;所以为奇数,且,,所以且为奇数,故.【点睛】本题考查等比数列通项及其前项和的应用,难度一般.对于公比为负数的等比数列,分析前项和所满足的不等式时,注意分类讨论,因此的奇偶会影响的正负.21.(本题满分14分)已知函数,为实数.(1)当时,判断函数的奇偶性,并说明理由;(2)当时,指出函数的单调区间(不要过程);(3)是否存在实数,使得在闭区间上的最大值为2.若存在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论