




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市王陶中学2021-2022学年高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.抛物线的焦点为F,M足抛物线C上的点,若三角形OFM的外接圆与抛物线C的准线相切,且该圆的面积为的值为(
)
A.2
B.4
C.6
D.8参考答案:【知识点】抛物线的简单性质.H7D
解析:∵△OFM的外接圆与抛物线C的准线相切,∴△OFM的外接圆的圆心到准线的距离等于圆的半径∵圆面积为36π,∴圆的半径为6,又∵圆心在OF的垂直平分线上,|OF|=,∴+=6,∴p=8,故选:D.【思路点拨】根据△OFM的外接圆与抛物线C的准线相切,可得△OFM的外接圆的圆心到准线的距离等于圆的半径,由此可求p的值.2.函数的定义域是,若对于任意的正数,函数都是其定义域上的增函数,则函数的图象可能是参考答案:A3.设全集U=R,集合A={},B={},则等于(A)[-1,0)
(B)(0,5]
(C)[-1,0]
(D)[0,5]参考答案:C4.已知复数为纯虚数,则m=A.
0
B.
3
C.
0或3
D.
4参考答案:B
.故选B.5.已知函数,则不等式的解集为(
)A.(-∞,-1)∪(3,+∞)
B.(-∞,-3)∪(1,+∞)C.(-3,-1)∪(-1,1)
D.(-1,1)∪(1,3)参考答案:C当时,,故其在内单调递增,又∵函数定义域为,,故其为偶函数,综上可得在内单调递减,在内单调递增且图象关于轴对称,即等价于且,即不等式的解集为,故选C.
6.在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则?=(
) A. B. C. D.参考答案:B考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:运用向量的平方即为模的平方,可得=0,再由向量的三角形法则,以及向量共线的知识,化简即可得到所求.解答: 解:若|+|=|﹣|,则=,即有=0,E,F为BC边的三等分点,则=(+)?(+)=()?()=(+)?(+)=++=×(1+4)+0=.故选B.点评:本题考查平面向量的数量积的定义和性质,考查向量的平方即为模的平方,考查向量共线的定理,考查运算能力,属于中档题.7.《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?()A.18 B.20 C.21 D.25参考答案:C【考点】88:等比数列的通项公式.【分析】设出等差数列的公差,由题意列式求得公差,再由等差数列的通项公式求解.【解答】解:设公差为d,由题意可得:前30项和S30=390=30×5+d,解得d=.∴最后一天织的布的尺数等于5+29d=5+29×=21.故选:C.8.(3分)用数学归纳法证明等式1+3+5+…+(2n﹣1)=n2(n∈N*)的过程中,第二步假设n=k时等式成立,则当n=k+1时应得到()A.1+3+5+…+(2k+1)=k2B.1+3+5+…+(2k+1)=(k+1)2C.1+3+5+…+(2k+1)=(k+2)2D.1+3+5+…+(2k+1)=(k+3)2参考答案:考点:数学归纳法.专题:阅读型.分析:首先由题目假设n=k时等式成立,代入得到等式1+3+5+…+(2k﹣1)=k2.当n=k+1时等式左边=1+3+5++(2k﹣1)+(2k+1)由已知化简即可得到结果.解答:因为假设n=k时等式成立,即1+3+5+…+(2k﹣1)=k2当n=k+1时,等式左边=1+3+5+…+(2k﹣1)+(2k+1)=k2+(2k+1)=(k+1)2.故选B.点评:此题主要考查数学归纳法的概念问题,涵盖知识点少,属于基础性题目.需要同学们对概念理解记忆.9.设点是曲线上的动点,且满足,则的取值范围为(
)A.
B.
C.
D.参考答案:A考点:1、椭圆的定义;2、两点间距离公式、直线方程及不等式的性质.10.将函数向右平移个单位后得到函数,则具有性质(
)A.在上单调递增,为偶函数
B.最大值为1,图象关于直线对称
C.在上单调递增,为奇函数
D.周期为π,图象关于点对称参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,角A,B,C的对边分别是a,b,c,已知sinB=,且满足sin2B=sinA?sinC,accosB=12,则a+c=.参考答案:3【考点】正弦定理;余弦定理.【分析】根据正弦定理以及余弦定理建立方程关系进行求解即可.【解答】解:在△ABC中,∵sin2B=sinA?sinC,∴b2=ac,∵sinB=,∴cosB=,∵accosB=12,∴ac=13,∴b2=ac=13,∵b2=a2+c2﹣2accosB,∴13=(a+c)2﹣2ac﹣2accosB=(a+c)2﹣2×13﹣2×13×,即(a+c)2=63,即a+c=3,故答案为:3.12.若圆x2+y2=4上有且只有四个点到直线12x-5y+c=0的距离等于1,则实数c的取值范围是
.参考答案:13.在△中,三个内角,,的对边分别为,,.若,,,则
.参考答案:14.给出以下四个结论:①函数的对称中心是;②若不等式对任意的都成立,则;③已知点在直线两侧,则;④若将函数的图像向右平移(0)个单位后变为偶函数,则的最小值是.其中正确的结论是____
______.参考答案:③④略15.将连续整数填入如图所示的行列的表格中,使每一行的数字从左到右都成递增数列,则第三列各数之和的最小值为
,最大值为
.
参考答案:;因为第3列前面有两列,共有10个数分别小于第3列的数,因此:最小为:3+6+9+12+15=45.因为第3列后面有两列,共有10个数分别大于第3列的数,因此:最大为:23+20+17+14+11=85.16.定义在正整数集上的函数满足(1);(2),则有
参考答案:(2分)(3分)
注意到和,易求得;因为,所以故有17.若两曲线的参数方程分别为(0≤θ<π)和(∈R),则它们的交点坐标为_________.参考答案:(1,)略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分13分)已知函数f(x)=x一(a>O,且a≠1)·(I)当a=3时,求曲线f(x)在点P(1,f(1))处的切线方程;(II)若函数f(x)存在最大值g(a),求g(a)的最小值。参考答案:19.已知△ABC中,内角A,B,C所对的边分别为a,b,c,若.(1)求cosB;(2)若,△ABC面积为2,求a+c的值.参考答案:(1);(2).【分析】(1)化简已知sin(A+C)=4,平方得到关于cosB的方程,解之即可.(2)由三角形面积公式可得ac,再由余弦定理解得a+c.【详解】(1)由题设及,得,故.上式两边平方,整理得,解得(含去),.(2)由,得,又,则.由余弦定理,.所以.【点睛】本题考查了三角形面积公式及余弦定理的运用,考查了二倍角公式的应用,属于基础题.20.已知函数.(Ⅰ)若不等式的解集为,求实数的值;(Ⅱ)在(Ⅰ)的条件下,若存在实数使成立,求实数的取值范围.参考答案:解:(1)由解得则
所以
5分(2)由(1)知则原不等式为所以
10分21.某港口要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口北偏西且与港口相距20海里的处,并以30海里/小时的航速沿正东方向匀速行驶,假设该小艇沿直线方向以海里/小时的航速匀速行驶,经过小时与轮船相遇。(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航速只能达到30海里/小时,试设计航行方案(即确定航向与航速的大小),使得小艇能以最短时间与轮船相遇,并说明理由。参考答案:某港口要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口北偏西且与港口相距20海里的处,并以30海里/小时的航速沿正东方向匀速行驶,假设该小艇沿直线方向以海里/小时的航速匀速行驶,经过小时与轮船相遇。(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航速只能达到30海里/小时,试设计航行方案(即确定航向与航速的大小),使得小艇能以最短时间与轮船相遇,并说明理由。20.解:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向。设小艇与轮船在C处相遇………..2分在中,如图,又此时轮船航行时间,
即小艇以海里/小时的速度航行,相遇时小艇的航行距离最小。
……..7分(2)设小艇与轮船在B处相遇,则有:故,
O
即,
解得
又时,故时,t取最小值,且最小值为此时在中,有OA=OB=AB=20
………12分故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.14分22.一家医药研究所,从中草
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陶瓷工艺品的室内景观设计创新趋势考核试卷
- 核电施工项目质量管理小组活动效果考核试卷
- 腹式呼吸护理技术规范
- Vela呼吸机使用操作教学
- 脓毒症急救与护理
- Kibdelin-A-生命科学试剂-MCE
- 超神数学-高考数学总复习基础篇(一轮)(练习册)专题04基本不等式(含答案或解析)
- 新能源二手车市场2025年评估体系构建与流通模式创新趋势报告
- 面向2025年的汽车行业供应链风险管理技术创新与韧性提升报告
- 2025年教育培训行业品牌建设与品牌影响力提升策略研究报告
- 变压器实验报告
- 游乐场合作经营合同书
- 神经生理治疗技术
- 浙江温州高速公路瓯北片区招聘高速公路巡查人员考试真题2022
- 江苏苏州工业园区苏相合作区管理委员会机关工作人员招聘13人告5204笔试题库含答案解析
- 三年级下学期音乐复习题
- 电网调度自动化系统调试报告模板
- 电梯维保考试经典试题
- 飞机应急设备检查与控制
- GA 1808-2022军工单位反恐怖防范要求
- 抖音底层逻辑与算法
评论
0/150
提交评论