山西省长治市武乡县第二中学2022年高二数学文联考试题含解析_第1页
山西省长治市武乡县第二中学2022年高二数学文联考试题含解析_第2页
山西省长治市武乡县第二中学2022年高二数学文联考试题含解析_第3页
山西省长治市武乡县第二中学2022年高二数学文联考试题含解析_第4页
山西省长治市武乡县第二中学2022年高二数学文联考试题含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省长治市武乡县第二中学2022年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.命题,,命题,使得,则下列命题中为真命题的是(

).A. B. C. D.参考答案:C,,令,,∴是真命题,,,∵,∴,∴是假命题,∴是真命题.故选.2.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点.且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A. B. C.3 D.2参考答案:A【考点】椭圆的简单性质;余弦定理;双曲线的简单性质.【分析】根据双曲线和椭圆的性质和关系,结合余弦定理即可得到结论.【解答】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|PF1|=r1,|PF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1PF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即,②在双曲线中,①化简为即4c2=4a12+r1r2,即,③联立②③得,=4,由柯西不等式得(1+)()≥(1×+)2,即()=即,d当且仅当时取等号,法2:设椭圆的长半轴为a1,双曲线的实半轴为a2,(a1>a2),半焦距为c,由椭圆和双曲线的定义可知,设|PF1|=r1,|PF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1PF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos=(r1)2+(r2)2﹣r1r2,由,得,∴=,令m===,当时,m,∴,即的最大值为,法3:设PF1|=m,|PF2|=n,则,则a1+a2=m,则=,由正弦定理得=,即=sin≤=故选:A3.已知点A(﹣2,1),y2=﹣4x的焦点是F,P是y2=﹣4x上的点,为使|PA|+|PF|取得最小值,则P点的坐标是()A.(,1) B.(﹣2,) C.(,﹣1) D.(﹣2,)参考答案:A【考点】抛物线的简单性质;抛物线的定义.【专题】计算题;数形结合.【分析】过P作PK⊥l(l为抛物线的准线)于K,则|PF|=|PK|,进而问题转化为求|PA|+|PK|的最小值,当P,A,K三点共线时即当P点的纵坐标与A点的纵坐标相同时,|PA|+|PK|最小,把y=1代入抛物线方程求得x,则点P的纵坐标可得,进而求得P的坐标.【解答】解:过P作PK⊥l(l为抛物线的准线)于K,则|PF|=|PK|,∴|PA|+|PF|=|PA|+|PK|.∴当P点的纵坐标与A点的纵坐标相同时,|PA|+|PK|最小,此时P点的纵坐标为1,把y=1代入y2=﹣4x,得,即当P点的坐标为(,1)时,|PA|+|PF|最小.故选A【点评】本题主要考查了抛物线的简单性质.考查了学生对抛物线基础知识的掌握和数形结合思想的应用.4.在△ABC中,∠A=60°,,,则△ABC解的情况() A.无解 B.有唯一解 C.有两解 D.不能确定参考答案:B【考点】正弦定理. 【专题】计算题;转化思想;分析法;三角函数的求值. 【分析】根据正弦定理,结合题中数据解出sinB,再由∠B+∠C=180°﹣∠A=120°,得出B<120°,所以∠B=30°,从而∠C=90°.由此可得满足条件的△ABC有且只有一个. 【解答】解:∵△ABC中,∠A=60°,a=,b=, ∴根据正弦定理,得sinB===, ∵∠A=60°,得∠B+∠C=120° ∴由sinB=,得∠B=30°,从而得到∠C=90° 因此,满足条件的△ABC有且只有一个. 故选:B. 【点评】本题给出三角形ABC的两条边的一个角,求满足条件的三角形个数.着重考查了利用正弦定理解三角形的知识,属于基础题. 5.在△ABC中,角A、B、C的对边分别为a,b,c,若,则角B的值是

A.

B.

C.或

D.或参考答案:D略6.执行如图所示的程序框图,若输入A的值为2,则输出的P值为()A.2

B.3C.4

D.5参考答案:C7.当时,设命题p:函数在区间上单调递增,命题q:不等式对任意都成立.若“p且q”是真命题,则实数的取值范围为A. B. C. D.参考答案:A8.设a、b都是不等于1的正数,则“3a>3b>3”是“loga3<logb3”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】求解3a>3b>3,得出a>b>1,loga3<logb3,或根据对数函数的性质求解即可,再利用充分必要条件的定义判断即可.【解答】解:a、b都是不等于1的正数,∵3a>3b>3,∴a>b>1,∵loga3<logb3,∴,即<0,或求解得出:a>b>1或1>a>b>0或b>1,0<a<1根据充分必要条件定义得出:“3a>3b>3”是“loga3<logb3”的充分条不必要件,故选:B.9.在复平面内,复数i(2﹣i)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:A【考点】复数的代数表示法及其几何意义.【分析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.【解答】解:∵复数z=i(2﹣i)=﹣i2+2i=1+2i∴复数对应的点的坐标是(1,2)这个点在第一象限,故选A.10.从区间随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn构成n个数对(x1,y1),(x2,y2)…(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A. B. C. D.参考答案:C【考点】几何概型.【分析】以面积为测度,建立方程,即可求出圆周率π的近似值.【解答】解:由题意,≈,∴π≈.故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.已知双曲线–=1的一条渐近线与它的右准线交于点A,F为双曲线的右焦点,且直线FA的倾斜角为arccos(–),则此双曲线的离心率为__________参考答案:12.函数的最大值为____.参考答案:1【分析】先写出函数的定义域,利用导数得到函数的单调区间,由单调性即可得函数最值.【详解】函数f(x)的定义域为,对函数求导得,=0,x=1,当时,,则函数在上单调递增,当时,,则函数在上单调递减,则当x=1时函数f(x)取得最大值为f(1)=1,故答案为:1【点睛】本题考查利用导数研究函数的最值和单调性,属于基础题.13.已知,则的最小值为

.参考答案:2略14.如果直线(2a+5)x+(a-2)y+4=0与直线(2-a)x+(a+3)y-1=0互相垂直,则a的值等于

参考答案:y=X

略15.变量x,

y满足条件设,则

.参考答案:3316.抛物线y2=4x的焦点坐标是

.参考答案:17.阅读下面的流程图,若输入a=6,b=2,则输出的结果是

.参考答案:1三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在△ABC中,∠ABC=90°,,BC=1,P为△ABC内一点,∠BPC=90°(Ⅰ)若,求PA;(Ⅱ)若∠APB=150°,求tan∠PBA.参考答案:【考点】余弦定理;正弦定理.【专题】解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB?ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.19.(2015秋?枣庄校级月考)某投资商到一开发区投资72万元建起一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设f(n)表示前n年的纯利润总和(f(n)前n年总收入前n年的总支出﹣投资额72万元)(1)该厂从第几年开始盈利?(2)写出年平均纯利润的表达式.参考答案:考点;函数模型的选择与应用.专题;函数的性质及应用.分析;(1)通过f(n)=前n年的总收入﹣前n年的总支出﹣投资金额72万元即可列出表达式,进而解不等式f(n)>0即得结论;(2)通过年平均纯利润为,直接列式即可.解答;解:(1)依题意,根据f(n)=前n年的总收入﹣前n年的总支出﹣投资金额72万元,可得f(n)=50n﹣[12n+×4]﹣72=﹣2n2+40n﹣72,由f(n)>0,即﹣2n2+40n﹣72>0,解得:2<n<18,由于n为整数,故该厂从第3年开始盈利;(2)年平均纯利润=﹣2n+40﹣=40﹣2(n+).点评;本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于基础题20.已知空间三点,,(1)求以为边的平行四边形的面积;(2)若向量a分别与垂直,且|a|=,求a的坐标.

参考答案:略21.(本小题满分12分)

已知数列为等差数列,且

求(1)求数列的通项公式;(2)求数列的前n项和。参考答案:解:(1)设等差数列的公差为d.

………1分

由解得d=1.…4分所以………7分(2)………………9分……………12分22.如图,中,.(Ⅰ)求边,BC的长;(Ⅱ)若点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论