




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市师力成才学校2022-2023学年高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若复数满足(为虚数单位),则复数的模A. B. C. D.参考答案:A2.已知函数,若互不相等,且,则的取值范围是
(
)A.
B.
C.D.
参考答案:C略3.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【分析】根据以及充分不必要条件的定义可得.【详解】因为,所以?所以”是“”的充分不必要条件.故选A.【点睛】本题考查了对数不等式以及充分必要条件,属基础题.4.执行如图所示的程序框图,若输入的,则输出的j=(
)A.1 B.3 C.5 D.7参考答案:C【分析】根据框图流程,依次计算运行的结果,直到不满足条件,输出j值.【详解】由程序框图知:n=4,第一次运行,i=1,j=1,j=2i-j=1,满足i<4,第二次运行i=2,j=2i-j=3;满足i<4,第三次运行i=3,j=2i-j=3;满足i<4,第四次运行i=4,j=2i-j=5;不满足i<4,程序运行终止,输出j=5.故选:C.【点睛】本题考查了循环结构的程序框图,根据框图流程依次计算运行结果是解答此类问题的常用方法.5.函数()的图象如右图所示,为了得到的图像,可以将的图像(
)
A.向左平移个单位长度
B.向左平移个单位长度
C.向右平移个单位长度
D.向右平移个单位长度参考答案:C略6.“<0”是“”的(A)充分条件
(B)充分而不必要条件
(C)必要而不充分条件
(D)既不充分也不必要条件参考答案:B略7.若复数(α∈R,i为虚数单位)是纯虚数,则实数α的值为()A.﹣6 B.﹣4 C.4 D.6参考答案:A【考点】A5:复数代数形式的乘除运算.【分析】把已知复数利用复数代数形式的乘除运算化简,然后由实部等于0且虚部不等于0求得a的值.【解答】解:∵=为纯虚数,∴,解得:a=﹣6.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.8.曲线在点处的切线方程为(
)A.
B.
C.
D.参考答案:A略9.设复数:为实数,则x=
(
)
A.-2
B.-1
C.1
D.2
参考答案:答案:A10.已知,函数在上单调递减.则的取值范围是()A.
B.
C.
D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.设,且方程有两个不同的实数根,则这两个实根的和为
.参考答案:或12.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时f(x)=2﹣x给出结论如下:①任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)?(2k,2k﹣1).其中所有正确结论的序号是参考答案:①②④考点: 抽象函数及其应用;函数的周期性.
专题: 综合题;压轴题.分析: 依据题中条件注意研究每个选项的正确性,连续利用题中第(1)个条件得到①正确;连续利用题中第(2)个条件得到②正确;利用反证法及2x变化如下:2,4,8,16,32,判断③命题错误;据①②③的正确性可得④是正确的.解答: 解:①f(2m)=f(2?2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2),正确;②取x∈(2m,2m+1),则∈(1,2];f()=2﹣,从而f(x)=2f()=…=2mf()=2m+1﹣x,其中,m=0,1,2,…从而f(x)∈[0,+∞),正确;③f(2n+1)=2n+1﹣2n﹣1,假设存在n使f(2n+1)=9,即存在x1,x2,﹣=10,又,2x变化如下:2,4,8,16,32,显然不存在,所以该命题错误;④根据前面的分析容易知道该选项正确;综合有正确的序号是①②④.点评: 本题通过抽象函数,考查了函数的周期性,单调性,以及学生的综合分析能力,难度不大.13.已知函数在时取得最大值,则
.参考答案:由题得故答案为:
14.已知函数f(x)=,若命题“?t∈R,且t≠0,使得f(t)≥kt”是假命题,则实数k的取值范围是.参考答案:(,1]【考点】特称命题.【分析】由x<1时函数的单调性,画出函数f(x)的图象,把命题“存在t∈R,且t≠0,使得f(t)≥kt”是假命题转化为“任意t∈R,且t≠0,使得f(t)<kt恒成立”,作出直线y=kx,设直线与y=lnx(x≥1)图象相切于点(m,lnm),求出切点和斜率,设直线与y=x(x﹣1)2(x≤0)图象相切于点(0,0),得切线斜率k=1,由图象观察得出k的取值范围.【解答】解:当x<1时,f(x)=﹣|x3﹣2x2+x|=﹣|x(x﹣1)2|=,当x<0,f′(x)=(x﹣1)(3x﹣1)>0,∴f(x)是增函数;当0≤x<1,f′(x)=﹣(x﹣1)(3x﹣1),∴f(x)在区间(0,)上是减函数,在(,1)上是增函数;画出函数y=f(x)在R上的图象,如图所示;命题“存在t∈R,且t≠0,使得f(t)≥kt“是假命题,即为任意t∈R,且t≠0时,使得f(t)<kt恒成立;作出直线y=kx,设直线与y=lnx(x≥1)图象相切于点(m,lnm),则由(lnx)′=,得k=,即lnm=km,解得m=e,k=;设直线与y=x(x﹣1)2(x≤0)的图象相切于点(0,0),∴y′=[x(x﹣1)2]′=(x﹣1)(3x﹣1),则有k=1,由图象可得,当直线绕着原点旋转时,转到与y=lnx(x≥1)图象相切,以及与y=x(x﹣1)2(x≤0)图象相切时,直线恒在上方,即f(t)<kt恒成立,∴k的取值范围是(,1].故答案为:(,1].15.已知正三棱锥P-ABC的侧面是直角三角形,P-ABC的顶点都在球O的球面上,正三棱锥P-ABC的体积为36,则球O的表面积为__________。参考答案:108π【分析】先利用正三棱锥的特点,将球的内接三棱锥问题转化为球的内接正方体问题,从而将问题转化为正方体的外接球问题.【详解】∵正三棱锥P﹣ABC,PA,PB,PC两两垂直,∴此正三棱锥的外接球即以PA,PB,PC为三边的正方体的外接球O,设球O的半径为R,则正方体的边长为,∵正三棱锥的体积为36,∴V=∴R=∴球O的表面积为S=4πR2=108故答案为:108.
16.在某个容量为的样本的频率分布直方图中,共有个小长方形,若中间一个小长方形的面积等于其他个小长方形面积和的,则中间一组的频数为
.参考答案:5017.设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为.参考答案:【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),利用“累加求和”可得an=.再利用“裂项求和”即可得出.【解答】解:∵数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),∴当n≥2时,an=(an﹣an﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴an=.∴=2.∴数列{}的前n项的和Sn===.∴数列{}的前10项的和为.故答案为:.【点评】本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知直线y=﹣x+1与椭圆相交于A、B两点,且线段AB的中点在直线l:x﹣2y=0上.(Ⅰ)求此椭圆的离心率;(Ⅱ)若椭圆的右焦点关于直线l的对称点在圆x2+y2=4上,求此椭圆的方程.参考答案:【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)设出A、B两点的坐标,由方程组得关于x的一元二次方程;由根与系数的关系,可得x1+x2,y1+y2;从而得线段AB的中点坐标,代入直线l的方程x﹣2y=0,得出a、c的关系,从而求得椭圆的离心率.(Ⅱ)设椭圆的右焦点坐标为F(b,0),F关于直线l:x﹣2y=0的对称点为(x0,y0),则由互为对称点的连线被对称轴垂直平分,可得方程组,解得x0、y0;代入圆的方程x02+y02=4,得出b的值,从而得椭圆的方程.【解答】解:(Ⅰ)设A、B两点的坐标分别为A(x1,y1),B(x2,y2),则由得:(a2+b2)x2﹣2a2x+a2﹣a2b2=0,由根与系数的关系,得,且判别式△=4a2b2(a2+b2﹣1)>0,即a2+b2﹣1>0(*);∴线段AB的中点坐标为().由已知得,∴a2=2b2=2(a2﹣c2),∴a2=2c2;故椭圆的离心率为.(Ⅱ)由(Ⅰ)知b=c,从而椭圆的右焦点坐标为F(b,0),设F(b,0)关于直线l:x﹣2y=0的对称点为(x0,y0),则且,解得.由已知得x02+y02=4,∴,∴b2=4,代入(Ⅰ)中(*)满足条件故所求的椭圆方程为.19.(10分)(2015?嘉峪关校级三模)如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,且与⊙O交于B、C两点,圆心O在∠PAC的内部,点M是BC的中点,(1)证明A、P、O、M四点共圆;(2)求∠OAM+∠APM的大小.参考答案:【考点】:弦切角.【专题】:选作题;矩阵和变换.【分析】:(1)要证明四点共圆,可根据圆内接四边形判定定理:四边形对角互补,而由AP是⊙O的切线,P为切点,易得∠APO=90°,故解答这题的关键是证明,∠AMO=90°,根据垂径定理不难得到结论.(2)由(1)的结论可知,∠OPM+∠APM=90°,只要能说明∠OPM=∠OAM即可得到结论.(1)证明:连结OP,OM,∵AP与⊙O相切于点P,∴OP⊥AP,∵M是⊙O的弦BC的中点,∴OM⊥BC,∴∠OPA+∠OMA=180°,∵圆心O在∠PAC的内部,∴四边形APOM的对角互补,∴A、P、O、M四点共圆…(5分)(2)解:由(1)得A、P、O、M四点共圆,∴∠OAM=∠OPM,由(1)得OP⊥AP,∵圆心O在∠PAC的内部,∴∠OPM+∠APM=90°,∴∠OAM+∠APM=90°…(10分)【点评】:本题是考查同学们推理能力、逻辑思维能力的好资料,题目以证明题为主,特别是一些定理的证明和用多个定理证明一个问题的题目,我们注意熟练掌握:1.射影定理的内容及其证明;2.圆周角与弦切角定理的内容及其证明;3.圆幂定理的内容及其证明;4.圆内接四边形的性质与判定.20.
如图,设椭圆C:的左、右焦点分别为F1,F2,上顶点为A,在x轴负半轴上有一点B,满足,且·=0.
(1)若过A、B、F2三点的圆恰好与直线y-3=0相切,求椭圆C的方程; (2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM、PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.参考答案:略21.(本小题满分13分)
如图,三棱柱ABC—A1B1C1的所有棱长都是2,又平面ABC,D、E分别是AC、CC1的中点。
(1)求证:平面A1BD;
(2)求二面角D—BA1—A的余弦值;
(3)求点B1到平面A1BD的距离。
参考答案:(Ⅰ)证明:以DA所在直线为轴,过D作AC的垂线为轴,DB所在直线为轴建立空间直角坐标系则A(1,0,0),C(),E(),A1(),C1(),B(),,∵
∴
………………2分
∴
…………4分又A1D与BD相交∴AE⊥面A1BD
……………5分(其它证法可平行给分)(Ⅱ)设面DA1B的法向量为由,,取……………7分设面AA1B的法向量为,则由,取
………………9分故二面角的余弦值为
…………………10分(Ⅲ),平面A1BD的法向量取则B1到平面A1BD的距离为
…………13分
22.已知椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点,过点P作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医药流通行业供应链可视化与成本控制策略研究报告
- 中国储能电池市场2025年能源资源应用分析报告
- 河北省廊坊市2025届英语八年级第二学期期末复习检测模拟试题含答案
- 保安岗位科目题库及答案
- 2025年家具制造业个性化定制生产模式下的个性化定制生产模式下的产业竞争力分析报告
- 安全注射管理试题及答案
- 安全试题分类及答案大全
- 安全环保试题题库及答案
- 沟通培训课件模板
- 学校礼仪接待培训课件
- 行政管理学科试题及答案分享
- 江苏南通2025年公开招聘农村(村务)工作者笔试题带答案分析
- 《公司法教学课件》课件
- 房屋停租合同协议
- 银行客户分类管理
- 区域保护合同协议
- 造价咨询保密管理制度
- 支吊架厂家抗震支架安装规范图集
- 2025年出国考试题库及答案
- 2025年江苏瑞海投资控股集团有限公司招聘笔试参考题库含答案解析
- 医疗废物应急处理流程与方案
评论
0/150
提交评论