版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知曲线且过定点,若且,则的最小值为().A. B.9 C.5 D.2.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为()A. B. C. D.3.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为A. B. C. D.4.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5.将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()A. B. C. D.6.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为()A. B.3 C.2 D.7.已知集合,,则A. B.C. D.8.设,为非零向量,则“存在正数,使得”是“”的()A.既不充分也不必要条件 B.必要不充分条件C.充分必要条件 D.充分不必要条件9.已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,,当取得最小值时,函数的解析式为()A. B.C. D.10.若实数、满足,则的最小值是()A. B. C. D.11.已知α,β是两平面,l,m,n是三条不同的直线,则不正确命题是()A.若m⊥α,n//α,则m⊥n B.若m//α,n//α,则m//nC.若l⊥α,l//β,则α⊥β D.若α//β,lβ,且l//α,则l//β12.已知方程表示的曲线为的图象,对于函数有如下结论:①在上单调递减;②函数至少存在一个零点;③的最大值为;④若函数和图象关于原点对称,则由方程所确定;则正确命题序号为()A.①③ B.②③ C.①④ D.②④二、填空题:本题共4小题,每小题5分,共20分。13.某高校开展安全教育活动,安排6名老师到4个班进行讲解,要求1班和2班各安排一名老师,其余两个班各安排两名老师,其中刘老师和王老师不在一起,则不同的安排方案有________种.14.已知是抛物线上一点,是圆关于直线对称的曲线上任意一点,则的最小值为________.15.(x+y)(2x-y)5的展开式中x3y3的系数为________.16.五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成______种不同的音序.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求的单调区间;(2)讨论零点的个数.18.(12分)如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.19.(12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:研发费用(百万元)2361013151821销量(万盒)1122.53.53.54.56(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.附:(1)相关系数(2),,,.20.(12分)已知函数,.(1)当时,讨论函数的零点个数;(2)若在上单调递增,且求c的最大值.21.(12分)设为实数,已知函数,.(1)当时,求函数的单调区间:(2)设为实数,若不等式对任意的及任意的恒成立,求的取值范围;(3)若函数(,)有两个相异的零点,求的取值范围.22.(10分)已知函数(I)若讨论的单调性;(Ⅱ)若,且对于函数的图象上两点,存在,使得函数的图象在处的切线.求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【详解】定点为,,当且仅当时等号成立,即时取得最小值.故选:A【点睛】本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.2、B【解析】
因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【详解】因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.故选:B【点睛】本题主要考查正负角的定义以及弧度制,属于基础题.3、A【解析】
求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,求出等式左边式子的范围,将等式右边代入,从而求解.【详解】解:由题意可得,焦点F(1,0),准线方程为x=−1,
过点P作PM垂直于准线,M为垂足,
由抛物线的定义可得|PF|=|PM|=x+1,
记∠KPF的平分线与轴交于
根据角平分线定理可得,,当时,,当时,,,综上:.故选:A.【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.4、B【解析】
先解不等式化简两个条件,利用集合法判断充分必要条件即可【详解】解不等式可得,解绝对值不等式可得,由于为的子集,据此可知“”是“”的必要不充分条件.故选:B【点睛】本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题.5、D【解析】
利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案.【详解】将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,,故选D.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解析】
本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可.【详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,,代入上式子中,得到,结合离心率满足,即可得出,故选D.【点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难.7、D【解析】
因为,,所以,,故选D.8、D【解析】
充分性中,由向量数乘的几何意义得,再由数量积运算即可说明成立;必要性中,由数量积运算可得,不一定有正数,使得,所以不成立,即可得答案.【详解】充分性:若存在正数,使得,则,,得证;必要性:若,则,不一定有正数,使得,故不成立;所以是充分不必要条件故选:D【点睛】本题考查平面向量数量积的运算,向量数乘的几何意义,还考查了充分必要条件的判定,属于简单题.9、A【解析】
先求出平移后的函数解析式,结合图像的对称性和得到A和.【详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【点睛】本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.10、D【解析】
根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.11、B【解析】
根据线面平行、线面垂直和空间角的知识,判断A选项的正确性.由线面平行有关知识判断B选项的正确性.根据面面垂直的判定定理,判断C选项的正确性.根据面面平行的性质判断D选项的正确性.【详解】A.若,则在中存在一条直线,使得,则,又,那么,故正确;B.若,则或相交或异面,故不正确;C.若,则存在,使,又,则,故正确.D.若,且,则或,又由,故正确.故选:B【点睛】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.12、C【解析】
分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性.【详解】(1)当时,,此时不存在图象;(2)当时,,此时为实轴为轴的双曲线一部分;(3)当时,,此时为实轴为轴的双曲线一部分;(4)当时,,此时为圆心在原点,半径为1的圆的一部分;画出的图象,由图象可得:对于①,在上单调递减,所以①正确;对于②,函数与的图象没有交点,即没有零点,所以②错误;对于③,由函数图象的对称性可知③错误;对于④,函数和图象关于原点对称,则中用代替,用代替,可得,所以④正确.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.二、填空题:本题共4小题,每小题5分,共20分。13、156【解析】
先考虑每班安排的老师人数,然后计算出对应的方案数,再考虑刘老师和王老师在同一班级的方案数,两者作差即可得到不同安排的方案数.【详解】安排6名老师到4个班则每班老师人数为1,1,2,2,共有种,刘老师和王老师分配到一个班,共有种,所以种.故答案为:.【点睛】本题考查排列组合的综合应用,难度一般.对于分组的问题,首先确定每组的数量,对于其中特殊元素,可通过“正难则反”的思想进行分析.14、【解析】
由题意求出圆的对称圆的圆心坐标,求出对称圆的圆坐标到抛物线上的点的距离的最小值,减去半径即可得到的最小值.【详解】假设圆心关于直线对称的点为,则有,解方程组可得,所以曲线的方程为,圆心为,设,则,又,所以,,即,所以,故答案为:.【点睛】该题考查的是有关动点距离的最小值问题,涉及到的知识点有点关于直线的对称点,点与圆上点的距离的最小值为到圆心的距离减半径,属于中档题目.15、40【解析】
先求出的展开式的通项,再求出即得解.【详解】设的展开式的通项为,令r=3,则,令r=2,则,所以展开式中含x3y3的项为.所以x3y3的系数为40.故答案为:40【点睛】本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.16、1【解析】
按照“角”的位置分类,分“角”在两端,在中间,以及在第二个或第四个位置上,即可求出.【详解】①若“角”在两端,则宫、羽两音阶一定在角音阶同侧,此时有种;②若“角”在中间,则不可能出现宫、羽两音阶不相邻且在角音阶的同侧;③若“角”在第二个或第四个位置上,则有种;综上,共有种.故答案为:1.【点睛】本题主要考查利用排列知识解决实际问题,涉及分步计数乘法原理和分类计数加法原理的应用,意在考查学生分类讨论思想的应用和综合运用知识的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】
(1)求导后分析导函数的正负再判断单调性即可.(2),有零点等价于方程实数根,再换元将原方程转化为,再求导分析的图像数形结合求解即可.【详解】(1)的定义域为,,当时,,所以在单调递减;当时,,所以在单调递增,所以的减区间为,增区间为.(2),有零点等价于方程实数根,令则原方程转化为,令,.令,,∴,,,,,当时,,当时,.如图可知①当时,有唯一零点,即有唯一零点;②当时,有两个零点,即有两个零点;③当时,有唯一零点,即有唯一零点;④时,此时无零点,即此时无零点.【点睛】本题主要考查了利用导数分析函数的单调性的方法,同时也考查了利用导数分析函数零点的问题,属于中档题.18、(1)证明见解析;(2)证明见解析.【解析】
证明:(1)在矩形中,,又平面,平面,所以平面.(2)连结,交于点,连结,在矩形中,点为的中点,又,故,,又,平面,所以平面,又平面,所以平面平面.19、(1)0.98;可用线性回归模型拟合.(2)【解析】
(1)根据题目提供的数据求出,代入相关系数公式求出,根据的大小来确定结果;(2)求出药品的每类剂型经过两次检测后合格的概率,发现它们相同,那么经过两次检测后,,三类剂型合格的种类数为,服从二项分布,利用二项分布的期望公式求解即可.【详解】解:(1)由题意可知,,由公式,,∴与的关系可用线性回归模型拟合;(2)药品的每类剂型经过两次检测后合格的概率分别为,,,由题意,,.【点睛】本题考查相关系数的求解,考查二项分布的期望,是中档题.20、(1)见解析(2)2【解析】
(1)将代入可得,令,则,设,则转化问题为与的交点问题,利用导函数判断的图象,即可求解;(2)由题可得在上恒成立,设,利用导函数可得,则,即,再设,利用导函数求得的最小值,则,进而求解.【详解】(1)当时,,定义域为,由可得,令,则,由,得;由,得,所以在上单调递增,在上单调递减,则的最大值为,且当时,;当时,,由此作出函数的大致图象,如图所示.由图可知,当时,直线和函数的图象有两个交点,即函数有两个零点;当或,即或时,直线和函数的图象有一个交点,即函数有一个零点;当即时,直线与函数的象没有交点,即函数无零点.(2)因为在上单调递增,即在上恒成立,设,则,①若,则,则在上单调递减,显然,在上不恒成立;②若,则,在上单调递减,当时,,故,单调递减,不符合题意;③若,当时,,单调递减,当时,,单调递增,所以,由,得,设,则,当时,,单调递减;当时,,单调递增,所以,所以,又,所以,即c的最大值为2.【点睛】本题考查利用导函数研究函数的零点问题,考查利用导函数求最值,考查运算能力与分类讨论思想.21、(1)函数单调减区间为;单调增区间为.(2)(3)【解析】
(1)据导数和函数单调性的关系即可求出;(2)分离参数,可得对任意的及任意的恒成立,构造函数,利用导数求出函数的最值即可求出的范围;(3)先求导,再分类讨论,根据导数和函数单调性以及最值得关系即可求出的范围【详解】解:(1)当时,因为,当时,;当时,.所以函数单调减区间为;单调增区间为.(2)由,得,由于,所以对任意的及任意的恒成立,由于,所以,所以对任意的恒成立,设,,则,所以函数在上单调递减,在上单调递增,所以,所以.(3)由,得,其中.①若时,则,所以函数在上单调递增,所以函数至多有一个零点,不合题意;②若时,令,得.由第(2)小题,知:当时,,所以,所以,所以当时,函数的值域为.所以,存在,使得,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论