版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在边长为的菱形中,,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为()A. B.C. D.2.已知,则的大小关系是()A. B. C. D.3.已知中,角、所对的边分别是,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分必要条件4.设,命题“存在,使方程有实根”的否定是()A.任意,使方程无实根B.任意,使方程有实根C.存在,使方程无实根D.存在,使方程有实根5.已知数列对任意的有成立,若,则等于()A. B. C. D.6.在中,“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.8.设,集合,则()A. B. C. D.9.数列满足,且,,则()A. B.9 C. D.710.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是()A. B. C. D.11.下列与的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)12.已知抛物线:()的焦点为,为该抛物线上一点,以为圆心的圆与的准线相切于点,,则抛物线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.平面直角坐标系中,O为坐标原点,己知A(3,1),B(-1,3),若点C满足,其中α,β∈R,且α+β=1,则点C的轨迹方程为14.在中,角,,的对边分别是,,,若,,则的面积的最大值为______.15.设常数,如果的二项展开式中项的系数为-80,那么______.16.已知函数,则曲线在处的切线斜率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面,,,,为的中点,是上的点.(1)若平面,证明:平面.(2)求二面角的余弦值.18.(12分)某地在每周六的晚上8点到10点半举行灯光展,灯光展涉及到10000盏灯,每盏灯在某一时刻亮灯的概率均为,并且是否亮灯彼此相互独立.现统计了其中100盏灯在一场灯光展中亮灯的时长(单位:),得到下面的频数表:亮灯时长/频数1020402010以样本中100盏灯的平均亮灯时长作为一盏灯的亮灯时长.(1)试估计的值;(2)设表示这10000盏灯在某一时刻亮灯的数目.①求的数学期望和方差;②若随机变量满足,则认为.假设当时,灯光展处于最佳灯光亮度.试由此估计,在一场灯光展中,处于最佳灯光亮度的时长(结果保留为整数).附:①某盏灯在某一时刻亮灯的概率等于亮灯时长与灯光展总时长的商;②若,则,,.19.(12分)已知函数f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范围;(Ⅱ)若a<0,对∀x,y∈-∞,a,都有不等式f(x)≤(y+2020)+20.(12分)已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.21.(12分)在直角坐标系x0y中,把曲线α为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程(1)写出的普通方程和的直角坐标方程;(2)设点M在上,点N在上,求|MN|的最小值以及此时M的直角坐标.22.(10分)已知,,,,证明:(1);(2).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
画图取的中点M,法一:四边形的外接圆直径为OM,即可求半径从而求外接球表面积;法二:根据,即可求半径从而求外接球表面积;法三:作出的外接圆直径,求出和,即可求半径从而求外接球表面积;【详解】如图,取的中点M,和的外接圆半径为,和的外心,到弦的距离(弦心距)为.法一:四边形的外接圆直径,,;法二:,,;法三:作出的外接圆直径,则,,,,,,,,,.故选:A【点睛】此题考查三棱锥的外接球表面积,关键点是通过几何关系求得球心位置和球半径,方法较多,属于较易题目.2、B【解析】
利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.【详解】依题意,函数与函数关于直线对称,则,即,又,所以,.故选:B.【点睛】本题主要考查对数、指数的大小比较,属于基础题.3、D【解析】
由大边对大角定理结合充分条件和必要条件的定义判断即可.【详解】中,角、所对的边分别是、,由大边对大角定理知“”“”,“”“”.因此,“”是“”的充分必要条件.故选:D.【点睛】本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题.4、A【解析】
只需将“存在”改成“任意”,有实根改成无实根即可.【详解】由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是“任意,使方程无实根”.故选:A【点睛】本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.5、B【解析】
观察已知条件,对进行化简,运用累加法和裂项法求出结果.【详解】已知,则,所以有,,,,两边同时相加得,又因为,所以.故选:【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.6、C【解析】
由余弦函数的单调性找出的等价条件为,再利用大角对大边,结合正弦定理可判断出“”是“”的充分必要条件.【详解】余弦函数在区间上单调递减,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要条件.故选:C.【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.7、C【解析】
由题意可得面,可知,因为,则面,于是.由此推出三棱锥外接球球心是的中点,进而算出,外接球半径为1,得出结果.【详解】解:由,翻折后得到,又,则面,可知.又因为,则面,于是,因此三棱锥外接球球心是的中点.计算可知,则外接球半径为1,从而外接球表面积为.故选:C.【点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.8、B【解析】
先化简集合A,再求.【详解】由得:,所以,因此,故答案为B【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能力.9、A【解析】
先由题意可得数列为等差数列,再根据,,可求出公差,即可求出.【详解】数列满足,则数列为等差数列,,,,,,,故选:.【点睛】本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.10、D【解析】
把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率.【详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,∴所求概率为.故选:D.【点睛】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率.11、C【解析】
利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2kπ+(k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2)与终边相同的角=+其中.12、C【解析】
根据抛物线方程求得点的坐标,根据轴、列方程,解方程求得的值.【详解】不妨设在第一象限,由于在抛物线上,所以,由于以为圆心的圆与的准线相切于点,根据抛物线的定义可知,、轴,且.由于,所以直线的倾斜角为,所以,解得,或(由于,故舍去).所以抛物线的方程为.故选:C【点睛】本小题主要考查抛物线的定义,考查直线的斜率,考查数形结合的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据向量共线定理得A,B,C三点共线,再根据点斜式得结果【详解】因为,且α+β=1,所以A,B,C三点共线,因此点C的轨迹为直线AB:【点睛】本题考查向量共线定理以及直线点斜式方程,考查基本分析求解能力,属中档题.14、【解析】
化简得到,,根据余弦定理和均值不等式得到,根据面积公式计算得到答案.【详解】,即,,故.根据余弦定理:,即.当时等号成立,故.故答案为:.【点睛】本题考查了三角恒等变换,余弦定理,均值不等式,面积公式,意在考查学生的综合应用能力和计算能力.15、【解析】
利用二项式定理的通项公式即可得出.【详解】的二项展开式的通项公式:,令,解得.∴,解得.故答案为:-2.【点睛】本小题主要考查根据二项式展开式的系数求参数,属于基础题.16、【解析】
求导后代入可构造方程求得,即为所求斜率.【详解】,,解得:,即在处的切线斜率为.故答案为:.【点睛】本题考查切线斜率的求解问题,考查导数的几何意义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)因为,利用线面平行的判定定理可证出平面,利用点线面的位置关系,得出和,由于底面,利用线面垂直的性质,得出,且,最后结合线面垂直的判定定理得出平面,即可证出平面.(2)由(1)可知,,两两垂直,建立空间直角坐标系,标出点坐标,运用空间向量坐标运算求出所需向量,分别求出平面和平面的法向量,最后利用空间二面角公式,即可求出的余弦值.【详解】(1)证明:因为,平面,平面,所以平面,因为平面,平面,所以可设平面平面,又因为平面,所以.因为平面,平面,所以,从而得.因为底面,所以.因为,所以.因为,所以平面.综上,平面.(2)解:由(1)可得,,两两垂直,以为原点,,,所在直线分别为,,轴,建立如图所示的空间直角坐标系.因为,所以,则,,,,所以,,,.设是平面的法向量,由取取,得.设是平面的法向量,由得取,得,所以,即的余弦值为.【点睛】本题考查线面垂直的判定和空间二面角的计算,还运用线面平行的性质、线面垂直的判定定理、点线面的位置关系、空间向量的坐标运算等,同时考查学生的空间想象能力和逻辑推理能力.18、(1)(2)①,,②72【解析】
(1)将每组数据的组中值乘以对应的频率,然后再将结果相加即可得到亮灯时长的平均数,将此平均数除以(个小时),即可得到的估计值;(2)①利用二项分布的均值与方差的计算公式进行求解;②先根据条件计算出的取值范围,然后根据并结合正态分布概率的对称性,求解出在满足取值范围下对应的概率.【详解】(1)平均时间为(分钟)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳时间长度为72分钟.【点睛】本题考查根据频数分布表求解平均数、几何概型(长度模型)、二项分布的均值与方差、正态分布的概率计算,属于综合性问题,难度一般.(1)如果,则;(2)计算正态分布中的概率,一定要活用正态分布图象的对称性对应概率的对称性.19、(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】
(Ⅰ)由题意不等式化为|1-2a|-|1-a|>1,利用分类讨论法去掉绝对值求出不等式的解集即可;(Ⅱ)由题意把问题转化为[f(x)]max≤[|y+2020|+|y-a|]min,分别求出【详解】(Ⅰ)由题意知,f(1)=|1-2a|-|1-a|>1,若a≤12,则不等式化为1-2a-1+a>1,解得若12<a<1,则不等式化为2a-1-(1-a)>1,解得若a≥1,则不等式化为2a-1+1-a>1,解得a>1,综上所述,a的取值范围是(-∞,-1)∪(1,+∞);(Ⅱ)由题意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max当x∈(-∞,a]时,|x-2a|-|x-a|≤-a,[f(x)]max因为|y+2020|+|y-a|≥|a+2020|,所以当(y+2020)(y-a)≤0时,[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,结合a<0,所以a的取值范围是[-1010,0).【点睛】本题考查了绝对值不等式的求解问题,含有绝对值的不等式恒成立应用问题,以及绝对值三角不等式的应用,考查了分类讨论思想,是中档题.含有绝对值的不等式恒成立应用问题,关键是等价转化为最值问题,再通过绝对值三角不等式求解最值,从而建立不等关系,求出参数范围.20、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《电路分析基础》课程教学大纲
- 《公务员制度》课程教学大纲
- 2024年出售旧养牛棚合同范本
- 2024年代耕代种协议书模板范本
- 《餐饮服务与管理》高教版(第二版)5.4中餐宴会服务单元练习卷(解析版)
- 华西护理管理
- 2024年超高压电缆连接件项目成效分析报告
- 2024至2030年中国迷你榨汁机数据监测研究报告
- 2023年放射性核素遥控后装机项目评估分析报告
- 2023年掺铊碘化铯闪烁晶体(CSL(TL))项目成效分析报告
- 压力容器日常使用状况、交接班和运行故障处理记录表
- 电力工程验收附件模板
- 简述火力发电厂生产过程课件
- 骨髓造血细胞形态学检查课件
- 砷环境地球化学研究进展
- 道路冷再生施工工艺及方法
- 施工区域交通安全措施及应急预案措施
- 新版幼儿园安全用电课件ppt
- 人教鄂教版科学六年级下册全册教案
- 《客舱服务与的管理》课程标准.doc
- 材料成型概论 第四章 挤压成型
评论
0/150
提交评论